Advancements in Pore-Scale Imaging of CO2 Desiccation Dynamics: A Review of Experimental Method for Deep Saline Aquifer Storage Systems

Authors

  • Jie Ren Hohai University, 1 Xikang Road, Nanjing 210024, China
  • Zhipeng Gao Hohai University, 1 Xikang Road, Nanjing 210024, China
  • Yuan Wang Hohai University, 1 Xikang Road, Nanjing 210024, China

Abstract

Against the backdrop of global carbon neutrality goals, injecting CO2 into deep saline aquifers has become a critical engineering strategy for large-scale carbon storage. However, salt precipitation during injection poses significant challenges, causing pore clogging and permeability reduction that threaten to the long-term safety and efficacy of CO2 storage. Therefore, an in-depth investigation into the mechanisms and influencing factors of salt precipitation under gas-brine multiphase flow conditions is essential for ensuring the stable operation of CO2 sequestration projects in deep saline aquifers. This paper comprehensively reviews recent applications of micro visualization techniques to investigate the dry-out effect during gas injection. It first addresses the visualization of interfacial stability and the complete drying process during displacement, followed by a discussion of experimental results from the literature focusing on key factors such as boundary conditions, salinity, and pore characteristics. High-salinity conditions were observed to intensify salt precipitation and clogging risks. Furthermore, variations in injection rates, gas-liquid alternation strategies, and solution replenishment modes significantly influenced the location and extent of salt precipitation, resulting in variable impacts on permeability and injection efficiency.

Article type:  Review article

Cited as:

Ren J, Gao ZP, Wang Y. 2025. Advancements in Pore-Scale Imaging of CO2 Desiccation Dynamics: A Review of Experimental Method for Deep Saline Aquifer Storage Systems. GeoStorage, 1(2), 137-157. https://doi.org/10.46690/gs.2025.02.04

Keywords:

Microscopic, Porous media, Salt precipitation, visualization, dry-out

References

Abbasi P, Madani M, Abbasi S, et al. 2022. Mixed salt precipitation and water evaporation during smart water alternative CO2 injection in carbonate reservoirs. Journal of Petroleum Science and Engineering, 208: 109258. https://doi.org/10.1016/j.petrol.2021.109258.

Akindipe D, Saraji S, Piri M. 2021. Salt precipitation during geological sequestration of supercritical CO2 in saline aquifers: A pore-scale experimental investigation. Advances in Water Resources, 155: 104011. https://doi.org/10.1016/j.advwatres.2021.104011.

Akindipe D, Saraji S, Piri M. 2022. Salt precipitation in carbon- ates during supercritical CO2 injection: A pore-scale experimental investigation of the effects ofwettability and heterogeneity. International Journal of Greenhouse Gas Control, 121: 103790. https://doi.org/10.1016/j.ijggc.2022.103790.

Akai T, Alhammadi AM, Blunt MJ, et al. 2019. Modeling oil recovery in mixed-wet rocks: pore-scale comparison between experiment and simulation. Transport in Porous Media, 127: 393–414. https://doi.org/10.1007/s11242-018-1198-8.

Al-Housseiny TT, Tsai PA, Stone HA. 2012. Control of interfa- cial instabilities using flow geometry. Nature Physics, 8(10):747-750. https://doi.org/10.1038/nphys2396.

Al-Khdheeawi EA, Vialle S, Barifcani A, et al. 2017. Effect of brine salinity on CO2 plume migration and trapping capacity in deep saline aquifers. The APPEA Journal, 57(1): 100 - 109. https://doi.org/10.1071/AJ16248.

Al-Khdheeawi EA, Vialle S, Barifcani A, et al. 2018. Effect of wettability heterogeneity and reservoir temperature on CO2 storage efficiency in deep saline aquifers. Interna- tional Journal of Greenhouse Gas Control, 68: 216-229. https://doi.org/10.1016/j.ijggc.2017.11.016.

Alizadeh AH, Akbarabadi M, Barsotti E, et al. 2018. Salt pre- cipitation in ultratight porous media and its impact on pore connectivity and hydraulic conductivity. Water Resources Research, 54(4): 2768-2780. https://doi.org/10.1002/2017WR021194.

Ali M, Aftab A, Arain ZUA, et al. 2020. Influence of organic acid concentration on wettability alteration of cap-rock: implications for CO2 trapping/storage. ACS Applied Materials & Interfaces, 12(35): 39850–39858. https://doi.org/10.1021/acsami.0c10491.

AlOmier A, Hoecherl M, Cha D, et al. 2024. Experimental Investigation of the Impact of Mixed Wettability on Pore- Scale Fluid Displacement: A Microfluidic Study. ACS Applied Materials & Interfaces, 16(50):69165-69179. https://doi.org/10.1021/acsami.4c13018.

An S, Erfani H, Godinez - Brizuela OE, et al. 2020. Transition from viscous fingering to capillary fingering: Application of GPU-based fully implicit dynamic pore network modeling. Water Resources Research, 56(12): e2020WR028149. https://doi.org/10.1029/2020WR028149.

André L, Peysson Y, Azaroual M. 2014. Well injectivity during CO2 storage operations in deep saline aquifers–Part 2: Numerical simulations of drying, salt deposit mechanisms and role of capillary forces. International Journal of Greenhouse Gas Control, 22: 301-312. https://doi.org/10.1016/j.ijggc.2013.10.030.

Aralekallu S, Boddula R, Singh V. 2023. Development of glass-based microfluidic devices: A review on its fabrication and biologic applications. Materials & Design, 225: 111517. https://doi.org/10.1016/j.matdes.2022.111517.

Avendaño J, Lima N, Quevedo A, et al. 2019. Effect of surface wettability on immiscible displacement in a microfluidic porous media. Energies, 12(4):664. https://doi.org/10.3390/en12040664.

Bachu S. 2015. Review of CO2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control, 40: 188-202. https://doi.org/10.1016/j.ijggc.2015.01.007.

Battat S, Weitz DA, Whitesides GM. 2022. An outlook on microfluidics: the promise and the challenge. Lab on a Chip, 22(3): 530-536. https://doi.org/10.1039/D1LC00731A.

Batz NG, Mellors JS, Alarie JP, et al. 2014. Chemical vapor deposition of aminopropyl silanes in microfluidic channels for highly efficient microchip capillary electrophoresis- electrospray ionization-mass spectrometry. Analytical Chemistry, 86(7): 3493–3500. https://doi.org/10.1021/ac404106u.

Baumann G, Henninges J, De Lucia M. 2014. Monitoring of saturation changes and salt precipitation during CO2 injection using pulsed neutron-gamma logging at the Ketzin pilot site. International Journal of Greenhouse Gas Control, 28: 134–146. https://doi.org/10.1016/j.ijggc.2014.06.023.

Bohnsack D, Potten M, Freitag S, et al. 2021. Stress sensitivity of porosity and permeability under varying hydrostatic stress conditions for different carbonate rock types of the geothermal Malm reservoir in Southern Germany. Geothermal Energy, 9(1): 15. https://doi.org/10.1186/s40517-021-00197-w.

Cai B, Li Q, Zhang X. 2021. China Carbon Dioxide Capture, Utilization and Storage (CCUS) Annual Report (2021) - China CCUS Pathway Research. Ministry of Ecology and Environment, Institute of Environmental Planning, Chinese Academy of Sciences, Institute of Rock and Soil Mechanics, China Agenda 21 Management Center.

Cai J, Jiao X, Wang H, et al. 2024. Multiphase fluid- rock interactions and flow behaviors in shale nanopores: A comprehensive review. Earth-Science Reviews, 104884. https://doi.org/10.1016/j.earscirev.2024.104884.

Chen K, Liu P, Wang W, et al. 2023. Effects of capillary and viscous forces on two-phase fluid displacement in the microfluidic model. Energy & Fuels, 37(22): 17263-17276. https://doi.org/10.1021/acs.energyfuels.3c03170.

Chen XS, Hu R, Zhou CX, et al. 2024. Capillary-driven backflow during salt precipitation in a rough fracture. Water Resources Research, 60(3):e2023WR035451. https://doi.org/10.1029/2023WR035451.

Cheng C, Busch B, Hilgers C. 2023. A microfluidic study into salt precipitation in saline aquifers induced by continuous CO2 injection. 84th EAGE Annual Conference and Exhibition, European Association of Geoscientists and Engineers, 2023(1): 1-5. https://doi.org/10.3997/2214-4609.2023101505.

Chiquet P, Daridon JL, Broseta D, et al. 2007. CO2 water interfacial tensions under pressure and temperature conditions of CO2 geological storage. Energy Conversion and Management, 48(3):736-744. https://doi.org/10.1016/j.enconman.2006.09.011.

Civan F. 2023. Reservoir Formation Damage: Fundamentals, Modeling, Assessment, and Mitigation. Gulf Professional Publishing.

Cui G, Hu Z, Ning F, et al. 2023. A review of salt precipitation during CO2 injection into saline aquifers and its potential impact on carbon sequestration projects in China. Fuel, 334:126615. https://doi.org/10.1016/j.fuel.2022.126615.

Da Wang Y, Kearney LM, Blunt MJ, et al. 2024. In situ characterization of heterogeneous surface wetting in porous materials. Advances in Colloid and Interface Science, 103122. https://doi.org/10.1016/j.cis.2024.103122.

Darkwah-Owusu V, Md Yusof MA, Sokama-Neuyam YA, et al. 2024. Assessment of Advanced Remediation Techniques for Enhanced CO2 Injectivity: Laboratory Investigations and Implications for Improved CO2 Flow in Saline Aquifers. Energy & Fuels, 38(10):8895–8908. https://doi.org/10.1021/acs.energyfuels.4c00949.

Dashtian H, Shokri N, Sahimi M. 2018. Pore-network model of evaporation-induced salt precipitation in porous media: The effect of correlations and heterogeneity. Advances in water resources, 112: 59-71. https://doi.org/10.1016/j.advwatres.2017.12.004.

Dabrowski KM, Nooraiepour M, Masoudi M, et al. 2024. How does surface wettability alter salt precipitation and growth dynamics during CO2 injection into saline aquifers: A microfluidic analysis. arXiv preprint arXiv, 2410: 04910. https://doi.org/10.48550/arXiv.2410.04910.

Dabrowski KM, Nooraiepour M, Masoudi M, et al. 2025. Surface wettability governs brine evaporation and salt precipitation during carbon sequestration in saline aquifers: Microfluidic insights. Science of The Total Environment, 958: 178110. https://doi.org/10.1016/j.scitotenv.2024.178110.

Dong L, Xiong Y, Huang Q, et al. 2021. Evaporation-induced salt crystallization and feedback on hydrological functions in porous media with different grain morphologies. Journal of Hydrology, 598: 126427. https://doi.org/10.1016/j.jhydrol.2021.126427.

Dong L, Liu S, Huang G, et al. 2024. Evaporation with Salt Crystallization in Capillaries of Different Cross Sections. Transport in Porous Media, 151(10): 2057 -2079. https://doi.org/10.1007/s11242-024-02106-8.

Elsayed M, Isah A, Hib M, et al. 2022. A review on the applications of nuclear magnetic resonance (NMR) in the oil and gas industry: laboratory and field-scale measurements. Journal of Petroleum Exploration and Production Technology, 12(10): 2747–2784. https://doi.org/10.1007/s13202-022-01476-3.

Galloway JM, Aslam ZP, Yeandel SR, et al. 2023. Electron transparent nanotubes reveal crystallization pathways in confinement. Chemical Science. 14(24): 6705-6715. https://doi.org/10.1039/d3sc00869j.

Gao Y, Raeini AQ, Selem AM, et al. 2020. Pore-scale imaging with measurement of relative permeability and capillary pressure on the same reservoir sandstone sample under water-wet and mixed-wet conditions. Advances in Water Resources, 146: 103786. https://doi.org/10.1016/j.advwatres.2020.103786.

Gogoi S, Gogoi SB. 2019. Review on microfluidic studies for EOR application. Journal of Petroleum Exploration and Production Technology, 9: 2263 - 2277. https://doi.org/10.1007/s13202- 019-0610-4.

Grude S, Landrø M, Dvorkin J. 2014. Pressure effects caused by CO2 injection in the Tubåen Fm., the Snøhvit field. International Journal of Greenhouse Gas Control, 27: 178–187. https://doi.org/10.1016/j.ijggc.2014.05.013.

Guggenheim EA. 1937. The theoretical basis of Raoult’s law. Transactions of the Faraday Society, 33: 151-156. https://doi.org/10.1039/TF9373300151.

Hao Y, Li Z, Su Y, et al. 2022. Experimental investigation of CO2 storage and oil production of different CO2 injection methods at pore-scale and core-scale. Energy, 254: 124349. https://doi.org/10.1016/j.energy.2022.124349.

He D, Jiang P, Lun Z, et al. 2019. Pore scale CFD simulation of supercritical carbon dioxide drainage process in porous media saturated with water. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(15): 1791-1799. https://doi.org/10.1080/15567036.2018.1549155.

He D, Jiang P, Xu R. 2019. Pore-scale experimental investigation of the effect of supercritical CO2 injection rate and surface wettability on salt precipitation. Environmental Science & Technology, 53(24):14744–14751. https://doi.org/10.1021/acs.est.9b03323.

He D, Xu R, Ji T, et al. 2022. Experimental investigation of the mechanism of salt precipitation in the fracture during CO2 geological sequestration. International Journal of Greenhouse Gas Control, 118: 103693. https://doi.org/10.1016/j.ijggc.2022.103693.

He D, Jiang P, Xu R. 2023. The influence of heterogeneous structure on salt precipitation during CO2 geological storage. Advances in Geo-Energy Research, 7(3): 189-198. https://doi.org/10.46690/ager.v7i3.261.

He D, Wang Z, Yuan H, et al. 2024. Experimental investigation of salt precipitation behavior and its impact on injectivity under variable injection operating conditions. Journal of Natural Gas Science and Engineering, 121: 205198. https://doi.org/10.1016/j.jgsce.2023.205198.

Hiller T, Ardevol-Murison J, Muggeridge A, et al. 2019. The impact of wetting-heterogeneity distribution on capillary pressure and macroscopic measures ofwettability. SPE Journal, 24(01): 200–214. https://doi.org/10.2118/194191-PA.

Ho THM, Tsai PA. 2020. Microfluidic salt precipitation: impli- cations for geological CO2 storage. Lab on a Chip, 20(20):3806-3814. https://doi.org/10.1039/D0LC00238K.

Holtzman R, Segre E. 2015. Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling. Physical Review Letters, 115(16):164501. https://doi.org/10.1103/PhysRevLett.115.164501.

Holtzman R. 2016. Effects of pore-scale disorder on fluid displacement in partially-wettable porous media. Scientific Reports, 6(1): 36221. https://doi.org/10.1038/srep36221.

Hossain A, Rajput P, Li Z, et al. 2024. Engineering bioinspired microfluidics; biomimetic self - healing/cleaning coating designs and unique advanced materials. Chemical Engineering Journal, : 151336. https://doi.org/10.1016/j.cej.2024.151336.

Hu R, Wan J, Yang Z, et al. 2018. Wettability and flow rate impacts on immiscible displacement: A theoretical model. Geophysical Research Letters, 45(7):3077-3086. https://doi.org/10.1002/2017GL076600.

Hu X, Wang J, Zhang L, et al. 2022. Direct visualization of nanoscale salt precipitation and dissolution dynamics during CO2 injection. Energies, 15(24):9567. https://doi.org/10.3390/en15249567.

Hwang J, Cho YH, Park MS, et al. 2019. Microchannel fabrication on glass materials for microfluidic devices. International Journal of Precision Engineering and Manufacturing, 20: 479-495. https://doi.org/10.1007/s12541-019-00103-2.

Irannezhad A, Primkulov BK, Juanes R, et al. 2023. Fluid-fluid displacement in mixed-wet porous media. Physical Review Fluids, 8(1):L012301. https://doi.org/10.1103/PhysRevFluids.8.L012301.

Iyer V, Issadore D, Aflatouni F. 2023. The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. Lab on a Chip, 23(11): 2553–2576. https://doi.org/10.1039/D2LC01163H.

Jahanbakhsh A, Wlodarczyk KL, Hand DP, et al. 2020. Review of microfluidic devices and imaging techniques for fluid flow study in porous geomaterials. Sensors, 20(14): 4030. https://doi.org/10.3390/s20144030.

Jannesarahmadi S, Aminzadeh M, Helmig R, et al. 2024. Quantifying salt crystallization impact on evaporation dynamics from porous surfaces. Geophysical Research Letters, 51(22): e2024GL111080. https://doi.org/10.1029/2024GL111080.

Jeddizahed J, Rostami B. 2016. Experimental investigation of injectivity alteration due to salt precipitation during CO2 sequestration in saline aquifers. Advances in water resources, 96: 23-33. https://doi.org/10.1016/j.advwatres.2016.06.014.

Jeong GS, Lee J, Ki S, et al. 2017. Effects of viscosity ratio, interfacial tension and flow rate on hysteric relative permeability of CO2/brine systems. Energy, 133: 62-69. https://doi.org/10.1016/j.energy.2017.05.138.

Juska VB, Maxwell G, Estrela P, et al. 2023. Silicon microfabrication technologies for biology integrated advance devices and interfaces. Biosensors and Bioelectronics, 237: 115503. https://doi.org/10.1016/j.bios.2023.115503.

Jung M, Brinkmann M, Seemann R, et al. 2016. Wettability controls slow immiscible displacement through local interfacial instabilities. Physical Review Fluids, 1(7): 074202. https://doi.org/10.1103/PhysRevFluids.1.074202.

Kalde A, Lippold S, Loelsberg J, et al. 2022. Surface Charge Affecting Fluid–Fluid Displacement at Pore Scale. Advanced Materials Interfaces, 9(9):2101895. https://doi.org/10.1002/admi.202101895.

Kalde AM, Grosseheide M, Brosch S, et al. 2022. Micro- model of a Gas Diffusion Electrode Tracks In-Operando Pore-Scale Wetting Phenomena. Small, 18(49): 2204012. https://doi.org/10.1002/smll.202204012.

Kang C, Mirbod P. 2019. Porosity effects in laminar fluid flow near permeable surfaces. Physical Review E, 100(1): 013109. https://doi.org/10.1103/PhysRevE.100.013109.

Kim J, Ferrari A, Ewy R, et al. 2025. Water retention behavior of a gas shale: Wettability-controlled water saturation and anisotropic hydromechanical response. International Journal of Rock Mechanics and Mining Sciences, 188: 106061. https://doi.org/10.1016/j.ijrmms.2025.106061.

Kim M, Sell A, Sinton D. 2013. Aquifer-on-a-Chip: understanding porescale salt precipitation dynamics during CO2 sequestration. Lab on a Chip, 13(13):2508-2518. https://doi.org/10.1039/C3LC00031A.

Kumar R, Campbell S, Sonnenthal E, et al. 2020. Effect of brine salinity on the geological sequestration of CO2 in a deep saline carbonate formation. Greenhouse Gases: Science and Technology, 10(2): 296–312. https://doi.org/10.1002/ghg.1960.

Kuzin A, Panda K, Chernyshev V, et al. 2024. Microflu- idic–nanophotonic sensor for on-chip analysis of complex refractive index. Applied Physics Letters, 124(6): 063701. https://doi.org/10.1063/5.0190351.

Lake JR, Heyde KC, Ruder WC. 2017. Low-cost feedback-controlled syringe pressure pumps for microfluidics applications. PLoS One, 12(4):e0175089. https://doi.org/10.1371/journal.pone.0175089.

Lei W, Gong W, Lu X, et al. 2024. Fluid entrapment during forced imbibition in a multidepth microfluidic chip with complex porous geometry. Journal of Fluid Mechanics, 987: A3. https://doi.org/10.1017/jfm.2024.358.

Lei W, Lu X, Gong W, et al. 2023. Triggering interfacial instabilities during forced imbibition by adjusting the aspect ratio in depth - variable microfluidic porous media. Proceedings of the National Academy of Sciences, 120(50): e2310584120. https://doi.org/10.1073/pnas.2310584120.

Lei W, Lu X, Wang M. 2023. Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: From interface science to multiphase flow patterns. Advances in Colloid and Interface Science, 311: 102826. https://doi.org/10.1016/j.cis.2022.102826.

Lenormand R, Touboul E, Zarcone C. 1988. Numerical models and experiments on immiscible displacements in porous media. Journal of Fluid Mechanics, 189: 165-187. https://doi.org/10.1017/S0022112088000953.

Leung DYC, Caramanna G, Maroto-Valer MM. 2014. An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39: 426–443. https://doi.org/10.1016/j.rser.2014.07.093.

Li B, Zhou J, Gan Q, et al. 2024. CO2 Sequestration: Influence on Mineral Dynamics and Reservoir Permeability in Depleted Carbonates. Energy & Fuels, 38(24): 23600 - 23615. https://doi.org/10.1021/acs.energyfuels.4c04618.

Li JX, Rezaee R, Müller TM, et al. 2021. Pore size distribution controls dynamic permeability. Geophysical Research Letters, 48(5): e2020GL090558. https://doi.org/10.1029/2020GL090558.

Li L, Zhang D, Su Y, et al. 2024. Microfluidic insights into CO2 sequestration and enhanced oil recovery in laminat- ed shale reservoirs: Postfracturing interface dynamics and micro-scale mechanisms. Advances in Geo-Energy Research, 13(3): 203–217. https://doi.org/10.46690/ager.v13i3.395.

Li X, Mao X, Li X, et al. 2024. A one-step process for multigradient wettability modification on a polymer surface. Analyst, 149(7): 2103-2113. https://doi.org/10.1039/D3AN02185H.

Li X, Peng B, Liu Q, et al. 2023. Micro and nanobubbles technologies as a new horizon for CO2-EOR and CO2 geological storage techniques: A review. Fuel, 341:127661. https://doi.org/10.1016/j.fuel.2023.127661.

Li Y, Blois G, Kazemifar F, et al. 2019. High-speed quantification of pore-scale multiphase flow of water and supercritical CO2 in 2-D heterogeneous porous micromodels: Flow regimes and interface dynamics. Water Resources Research, 55(5): 3758 - 3779. https://doi.org/10.1029/2018WR024635.

Liefferink RW, Naillon A, Bonn D, et al. 2018. Single layer porous media with entrapped minerals for microscale studies of multiphase flow. Lab on a Chip, 18(7):1094-1104. https://doi.org/10.1039/C7LC01377A.

Liu H, He Q, Borgia A, et al. 2016. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs. Energy Conversion and Management, 127: 149–159. https://doi.org/10.1016/j.enconman.2016.08.096.

Liu Y, Lv P, Liu Y, et al. 2016. CO2/water two-phase flow in a two dimensional micromodel of heterogeneous pores and throats. RSC Advances, 6(77):73897-73905. https://doi.org/10.1039/C6RA10229H.

Liu Y, Su G, Wang W, et al. 2024. A novel multi-functional SERS microfluidic sensor based on ZnO/Ag nanoflower arrays for label-free ultrasensitive detection of bacteria. Analytical Methods, 16(14): 2085-2092. https://doi.org/10.1039/D4AY00018H.

Lönartz MI, Yang Y, Deissmann G, et al. 2023. Capturing the dynamic processes of porosity clogging. Water Resources Research, 59(11): e2023WR034722. https://doi.org/10.1029/2023WR034722.

Lopez O, Youssef S, Estublier A, et al. 2020. Permeability alteration by salt precipitation: numerical and experimental investigation using X-Ray Radiography. E3S Web of Conferences, 146: 03001. https://doi.org/10.1051/e3sconf/202014603001.

Lu X, Kharaghani A, Adloo H, et al. 2020. The Brooks and Corey capillary pressure model revisited from pore network simulations of capillarity controlled invasion percolation process. Processes, 8(10): 1318. https://doi.org/10.3390/pr8101318.

Maes J, Geiger S. 2018. Direct pore-scale reactive transport modelling of dynamic wettability changes induced by surface complexation. Advances in Water Resources, 111: 6–19. https://doi.org/10.1016/j.advwatres.2017.10.032.

Massimiani A, Panini F, Marasso SL, et al. 2023. Design, fabrication, and experimental validation of microfluidic devices for the investigation of pore-scale phenomena in un- derground gas storage systems. Micromachines, 14(2): 308. https://doi.org/10.3390/mi14020308.

Mascle M, Lopez O, Deschamps H, et al. 2023. Investigation of salt precipitation dynamic in porous media by X - ray and Neutron dual-modality imaging. Science and Technologyfor Energy Transition, 78: 11. https://doi.org/10.2516/stet/2023009.

Mascini A, Boone M, Van Offenwert S, et al. 2021. Fluid invasion dynamics in porous media with complex wettabil- ity and connectivity. Geophysical Research Letters, 48(22):e2021GL095185. https://doi.org/10.1029/2021GL095185.

Miri R, van Noort R, Aagaard P, et al. 2015. New insights on the physics of salt precipitation during injection of CO2 into saline aquifers. International Journal of Greenhouse Gas Control, 43: 10–21. https://doi.org/10.1016/j.ijggc.2015.10.004.

Mouli-Castillo J, Wilkinson M, Mignard D, et al. 2019. Interseasonal compressed-air energy storage using saline aquifers. Nature Energy, 4(2): 131–139. https://doi.org/10.1038/s41560-018-0311-0.

Mu X, Chen FD, Dang KM, et al. 2023. Implantable photonic neural probes with 3D - printed microfluidics and applications to uncaging. Frontiers in Neuroscience, 17: 1213265. https://doi.org/10.3389/fnins.2023.1213265.

Naillon A, Joseph P, Prat M. 2017. Sodium chloride precipitation reaction coefficient from crystallization experiment in a microfluidic device. Journal of Crystal Growth, 463: 201–210. https://doi.org/10.1016/j.jcrysgro.2017.01.058.

Nordbotten JM, Celia MA, Bachu S. 2005. Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transport in Porous media, 58: 339 - 360. https://doi.org/10.1007/s11242-004-0670-9.

Noiriel C, Steefel CI, Yang L, et al. 2016. Effects of pore-scale precipitation on permeability and flow. Advances in Water Resources, 95:125-137. https://doi.org/10.1016/j.advwatres.2015.11.013.

Nooraiepour M, Fazeli H, Miri R, et al. 2018. Effect of CO2 phase states and flow rate on salt precipitation in shale caprocks—a microfluidic study. Environmental Science & Technology, 52(10): 6050-6060. https://doi.org/10.1021/acs.est.8b00251.

NooraiepourM, Masoudi M, ShokriN, et al. 2021. Probabilistic nucleation and crystal growth in porous medium: new insights from calcium carbonate precipitation on primary and secondary substrates. ACS omega, 6(42): 28072-28083. https://doi.org/10.1021/acsomega.1c04147.

Norouzi AM, Babaei M, Han WS, et al. 2021. CO2-plume geothermal processes: A parametric study of salt precipitation influenced by capillary driven backflow. Chemical Engineering Journal, 425: 130031. https://doi.org/10.1016/j.cej.2021.130031.

Ott H, Roels SM, De Kloe K. 2015. Salt precipitation due to supercritical gas injection: I. Capillary-driven flow in unimodal sandstone. International Journal of Greenhouse Gas Control, 43: 247-255. https://doi.org/10.1016/j.ijggc.2015.01.005.

Parvin S, Masoudi M, Sundal A, et al. 2020. Continuum scale modelling of salt precipitation in the context of CO2 storage in saline aquifers with MRST compositional. International Journal of Greenhouse Gas Control, 99: 103075. https://doi.org/10.1016/j.ijggc.2020.103075.

Patil VV, McPherson BJ. 2020. Identifying Hydrogeochemical Conditions for Fault Self-Sealing in Geological Storage. Water Resources Research, 56(3):e2018WR024436. https://doi.org/10.1029/2018WR024436.

Peysson Y, André L, Azaroual M. 2014. Well injectivity during CO2 storage operations in deep saline aquifers—Part 1: Experimental investigation of drying effects, salt precipitation and capillary forces. International Journal of Greenhouse Gas Control, 22: 291 - 300. https://doi.org/10.1016/j.ijggc.2013.10.031.

Pitzer KS, Peiper JC, Busey RH. 1984. Thermodynamic properties of aqueous sodium chloride solutions. Journal of Physical and Chemical Reference Data, 13(1):1-102. https://doi.org/10.1063/1.555709.

Qi ZB, Xu L, Xu Y, et al. 2018. Disposable silicon-glass microfluidic devices: precise, robust and cheap. Lab on a Chip, 18(24): 3872–3880. https://doi.org/10.1039/C8LC01109E.

Qian C, Rui Z, Liu Y, et al. 2025. Microfluidic investigation on microscopic flow and displacement behavior of CO2 multiphase system for CCUSEOR in heterogeneous porous media. Chemical Engineering Journal, 505: 159135. https://doi.org/10.1016/j.cej.2024.159135.

Rabbani HS, Or D, Liu Y, et al. 2018. Suppressing viscous fingering in structured porous media. Proceedings of the National Academy of Sciences, 115(19): 4833-4838. https://doi.org/10.1073/pnas.1800729115.

Ran B, Omikrine-Metalssi O, Fen-Chong T, et al. 2023. Pore crystallization and expansion of cement pastes in sulfate solutions with and without chlorides. Cement and Concrete Research, 166: 107099. https://doi.org/10.1016/j.cemconres.2023.107099.

Rasmusson K, Rasmusson M, Tsang Y, et al. 2016. A simulation study of the effect of trapping model, geological heterogeneity and injection strategies on CO2 trapping. International Journal of Greenhouse Gas Control, 52: 52-72. https://doi.org/10.1016/j.ijggc.2016.06.020.

Rathnaweera TD, Ranjith PG, Perera MSA, et al. 2016. Influence of CO2–brine co-injection on CO2 storage capacity enhancement in deep saline aquifers: an experimental study on Hawkesbury sandstone formation. Energy & Fuels, 30(5): 4229–4243. https://doi.org/10.1021/acs.energyfuels.6b00113.

Ren J, Wang Y, Feng D, et al. 2021. CO2 migration and distribution in multiscale heterogeneous deep saline aquifers. Advances in Geo-Energy Research, 5(3): 333–346. https://doi.org/10.46690/ager.v5i3.171.

Ren J, Wang Y, Zhang Y. 2018. A numerical simulation of a dry-out process for CO2 sequestration in heterogeneous deep saline aquifers. Greenhouse Gases: Science and Technology, 8(6): 1090–1109. https://doi.org/10.1002/ghg.1821.

Ren J, Wang Y, Feng D, et al. 2022. Characterization method and application of heterogeneous reservoir based on different data quantity. Lithosphere, 2021(4): 8267559. https://doi.org/10.2113/2022/8267559.

Roosta A, Zendehboudi S, Rezaei N. 2024. Improving the esti- mation accuracy of confined vapor–liquid equilibria by fine- tuning the pure component parameter in the PC-SAFT equa- tion of state. Physical Chemistry Chemical Physics, 26(18): 13790–13803. https://doi.org/10.1039/D3CP05979K.

Rufai A, Crawshaw J. 2017. Micromodel observations of evaporative drying and salt deposition in porous media. Physics of Fluids, 29(12): 126603. https://doi.org/10.1063/1.5004246.

Rufai A, Crawshaw J. 2018. Effect of wettability changes on evaporation rate and the permeability impairment due to salt deposition. ACS Earth and Space Chemistry, 2(4): 320-329. https://doi.org/10.1021/acsearthspacechem.7b00126.

Scherer GW. 1999. Crystallization in pores. Cement and Concrete Research, 29(8): 1347–1358. https://doi.org/10.1016/S0008- 8846(99)00002-2.

Schneider MH, Willaime H, Tran Y, et al. 2010. Wettability patterning by UV-initiated graft polymerization of poly (acrylic acid) in closed microfluidic systems of complex geometry. Analytical Chemistry, 82(21): 8848 - 8855. https://doi.org/10.1021/ac101345m.

Scanziani A, Lin Q, Alhosani A, et al. 2020. Dynamics of fluid displacement in mixed-wet porous media. Proceedings of the Royal Society A, 476(2240):20200040. https://doi.org/10.1098/rspa.2020.0040.

Seo S, Mastiani M, Hafez M, et al. 2019. Injection of in-situ generated CO2 microbubbles into deep saline aquifers for enhanced carbon sequestration. International Journal of Greenhouse Gas Control, 83: 256-264. https://doi.org/10.1016/j.ijggc.2019.02.017.

Shao J, You L, Jia N, et al. 2025. Real-time visualization of salt crystallization in 2-D microchannels. Geoenergy Science and Engineering, 246: 213622. https://doi.org/10.1016/j.geoen.2024.213622.

Sibiryakov B, Leite LWB, Sibiriakov E. 2021. Porosity, specific surface area and permeability in porous media. Journal of Applied Geophysics, 186: 104261. https://doi.org/10.1016/j.jappgeo.2021.104261.

Silverio V, Canane PAG, Cardoso S. 2019. Surface wettability and stability of chemically modified silicon, glass and polymeric surfaces via room temperature chemical vapor deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 570:210-217. https://doi.org/10.1016/j.colsurfa.2019.03.032.

Skottvoll FS, Escobedo - Cousin E, Mielnik MM. 2024. The Role of Silicon Technology in Organ-On-Chip: Current Status and Future Perspective. Advanced Materials Tech- nologies, 2401254. https://doi.org/10.1002/admt.202401254.

Smith N, Boone P, Oguntimehin A, et al. 2022. Quest CCS facility: Halite damage and injectivity remediation in CO2 injection wells. International Journal of Greenhouse Gas Control, 119: 103718. https://doi.org/10.1016/j.ijggc.2022.103718.

Suo S, O’Kiely D, Liu M, et al. 2024. Geometry effects on interfacial dynamics of gas-driven drainage in a gradient capillary. Water Resources Research, 60(9): e2023WR036766. https://doi.org/10.1029/2023WR036766.

Sun W, Li J, Liu Q, et al. 2024. Complexity upgrade and triggering mechanism of mixed-wettability: Comparative study of CO2 displacement in different phases. Fuel, 369: 131798. https://doi.org/10.1016/j.fuel.2024.131798.

Sun Y, Yu H, Yang B. 2024. Impact of Wettability on CO2 Dynamic Dissolution in Three-Dimensional Porous Media: Pore-Scale Simulation Using the Lattice Boltzmann Method. Langmuir, 40(43):22658-22672. https://doi.org/10.1021/acs.langmuir.4c02412.

Sun Z, Santamarina JC. 2019. Haines jumps: Pore scale mechanisms. Physical Review E, 100(2): 023115. https://doi.org/10.1103/PhysRevE.100.023115.

Tang Y, Yang R, Du Z, et al. 2015. Experimental study of formation damage caused by complete water vaporization and salt precipitation in sandstone reservoirs. Transport in Porous Media, 107: 205 - 218. https://doi.org/10.1007/s11242-014-0433-1.

Wang B. 2016. Study on the evaporation and salt deposition patterns of high salinity formation water in the near wellbore area of gas fields. Chengdu: Southwest Petroleum University, China.

Wang B, Wang X, Liang Q, et al. 2024. Investigation of pore - Scale evaporative drying, salt precipitation and crystallization migration in CO2 injection process by a Lab-on-a-Chip system. SPE Canadian Energy Technology Conference, SPE, D011S005R002. https://doi.org/10.2118/218048 -MS.

Wang W, Chang S, Gizzatov A. 2017. Toward reservoir-on- a-chip: fabricating reservoir micromodels by in situ growing calcium carbonate nanocrystals in microfluidic channels. ACS Applied Materials & Interfaces, 9(34): 29380–29386. https://doi.org/10.1021/acsami.7b10746.

Wang Y, Liu Y. 2014. Dry-out effect and site selection for CO2 storage in deep saline aquifers. Rock and Soil Mechanics, 35(6): 1711–1717.

Wang Y, Mackie E, Rohan J, et al. 2009. Experimental study on halite precipitation during CO2 sequestration. Paper S-CA2009-25 Presented at International Symposium of the Society of Core Analysts, Noordwijk, The Netherlands, 27-30.

Wang Z, Zheng H, Xia H. 2011. Femtosecond laser-induced modification of surface wettability of PMMA for fluid separation in microchannels. Microfluidics and Nanofluidics, 10: 225-229. https://doi.org/10.1007/s10404-010-0662-8.

Wang Z, Pereira JM, Gan Y. 2021. Effect of grain shape on quasistatic fluid-fluid displacement in porous media. Water Resources Research, 57(4): e2020WR029415. https://doi.org/10.1029/2020WR029415.

Wang Z, Ong LJY, Gan Y, et al. 2024. PoroFluidics: deterministic fluid control in porous microfluidics. Lab on a Chip, 24(17): 4050-4059. https://doi.org/10.1039/D4LC00518J.

Wang Z, Chen S, Yuan H, et al. 2023. Experimental Investigation on Salt Precipitation Behavior during Carbon Geological Sequestration: Considering the Influence of Formation Boundary Solutions. Energy & Fuels, 38(1): 514-525. https://doi.org/10.1021/acs.energyfuels.3c03767.

Wei G, Hu R, Liao Z, et al. 2021. Effect of wettability on displacement efficiency of two-phase flow in porous media. Chinese Journal of Theoretical and Applied Mechanics, 53(4): 1008-1017.

Wei H, Sha X, Chen L, et al. 2024. Visualization of Multiphase Reactive Flow and Mass Transfer in Functionalized Microfluidic Porous Media. Small, 2401393. https://doi.org/10.1002/smll.202401393.

Wei YM, Chen K, Kang JN, et al. 2022. Policy and management of carbon peaking and carbon neutrality: A literature review. Engineering, 14: 52–63. https://doi.org/10.1016/j.eng.2021.12.018.

Wu R, Chen F. 2023. Interplay between salt precipitation, corner liquid film flow, and gas–liquid displacement during evaporation in microfluidic pore networks. Journal ofApplied Physics, 133: 074701. https://doi.org/10.1063/5.0135135.

Wu Y, Chen Y, Cheng Y. 2024. Building an Arduino-Based Open-Source Programmable Multichannel Syringe Pump: A Useful Tool for Fluid Delivery in Microfluidics and Flow Chemistry. Journal of Chemical Education, 101(5): 1951–1958. https://doi.org/10.1021/acs.jchemed.4c00033.

Xing X, Ou Yang J, Zhou L, et al. 2022. Advances in crystallization research in restricted spaces. Chemical Industry and Engineering, 39(5): 39–48.

Yan L, Niftaliyev R, Voskov D, et al. 2025. Dynamics of salt precipitation at pore scale during CO2 subsurface storage in saline aquifer. Journal of Colloid and Interface Science, 678: 419–430. https://doi.org/10.1016/j.jcis.2024.08.265.

Yang F, Guan D, Starchenko V, et al. 2024. Effect of nucleation heterogeneity on mineral precipitation in confined environments. Geophysical Research Letters, 51(9):e2023GL107185. https://doi.org/10.1029/2023GL107185.

Yang Z, Méheust Y, Neuweiler I, et al. 2019. Modeling immiscible two-phase flow in rough fractures from capillary to viscous fingering. Water Resources Research, 55(3): 2033-2056. https://doi.org/10.1029/2018WR024045.

Zhang C, Oostrom M, Wietsma TW, et al. 2011. Influence of viscous and capillary forces on immiscible fluid displacement: Pore - scale experimental study in a water-wet micro-model demonstrating viscous and capillary fingering. Energy & Fuels, 25(8): 3493-3505. https://doi.org/10.1021/ef101732k.

Zhang H, Sun Z, Zhang N, et al. 2024. Brine drying and salt precipitation in porous media: A microfluidics study. Water Resources Research, 60(1): e2023WR035670. https://doi.org/10.1029/2023WR035670.

Zhang L, Lai F, Meng Y, et al. 2025. Classification evaluation of the suitability of CO2 storage in Saline Aquifers. Geoenergy Science and Engineering, 249: 213796. https://doi.org/10.1016/j.geoen.2025.213796.

Zhang Q, Kuang G, Wang L, et al. 2024. Tailoring drug delivery systems by microfluidics for tumor therapy. Materials Today, 73: 151-178. https://doi.org/10.1016/j.mattod.2024.01.004.

Zhang W, Gu X, Zhong W, et al. 2022. Review of transparent soil model testing technique for underground construction: Ground visualization and result digitalization. Underground Space, 7(4): 702–723. https://doi.org/10.1016/j.undsp.2020.05.003.

Zhao B, MacMinn CW, Juanes R. 2016. Wettability control on multiphase flow in patterned microfluidics. Proceedings of the National Academy of Sciences, 113(37): 10251-10256. https://doi.org/10.1073/pnas.1603387113.

Zhou CX, Hu R, Li HW, et al. 2022. Pore-scale visualization and quantification of dissolution in microfluidic rough channels. Water Resources Research, 58(11): e2022WR032255. https://doi.org/10.1029/2022WR032255.

Zhou Y, Liao XW, Zhang XL, et al. 2021. The effect of inorganic salt precipitation on oil recovery during CO2 flooding: A case study of Chang 8 block in Changqing oilfield, NW China. Petroleum Exploration and Development, 48(2):442–449. https://doi.org/10.1016/S1876-3804(21)60035-6.

Zhu Y, Hu Y, Zhu Y. 2024. Can China’s energy policies achieve the “dual carbon” goal? A multi-dimensional analysis based on policy text tools. Environment, Development and Sustain- ability, 2024: 1–40. https://doi.org/10.1007/s10668-024-05190-4.

Zou S, Liu Y, Cai J, et al. 2020. Influence of capillarity on relative permeability in fractional flows. Water Resources Research, 56(11):e2020WR027624. https://doi.org/10.1029/2020WR027624.

Zou S, Chen D, Kang N, et al. 2024. An experimental investigation on the energy signature associated with multiphase flow in porous media displacement regimes. Water Resources Research, 60(3): e2023WR036241. https://doi.org/10.1029/2023WR036241.

Zuluaga E, Monsalve JC. 2003. Water vaporization in gas reservoirs. In SPE Eastern Regional Meeting, SPE, SPE-84829-MS. https://doi.org/10.2118/84829-MS.

Zwanenburg EA, Williams MA, Warnett JM. 2021. Review of high-speed imaging with lab-based x-ray computed tomography. Measurement Science and Technology, 33(1): 012003. https://doi.org/10.1088/1361-6501/ac354a.

Downloads

Download data is not yet available.

Downloads

Published

2025-11-16

How to Cite

Ren, J., Gao, Z., & Wang, Y. (2025). Advancements in Pore-Scale Imaging of CO2 Desiccation Dynamics: A Review of Experimental Method for Deep Saline Aquifer Storage Systems. GeoStorage, 1(2), 137–157. Retrieved from https://gs.yandypress.com/index.php/3080-8812/article/view/120

Issue

Section

Articles