Recent Progress in CO2 Mineralization to Mitigate CO2 Emissions: A Review
Abstract
Global climate warming poses a significant threat to the human living environment, and CO2 geological utilization and storage (CGUS) technology is regarded as a promising strategy for reducing carbon emissions. CO2 mineralization represents a crucial aspect of CCUS technologies, offering a safe and stable method for carbon sequestration. Nonetheless, the complex interactions among CO2, fluids, and minerals present challenges for large-scale mineralization storage. Controlling the carbonation rate under varying reaction conditions proves to be a difficult task. Additionally, carbon mineralization reactions may lead to structural alterations in geological formations and wellbores, which introduces potential risks to the safety of carbon storage. This paper offers a comprehensive review and introduction to the latest advancements of CO2 mineralization in three scenarios: in oil reservoirs and saline aquifers, in basalt, and through the utilization of solid waste. Following the presentation of representative studies conducted in recent years for each scenario of CO2 mineralization, this paper discusses the primary challenges exist in the pursuit of greenhouse gas reduction through large-scale CO2 mineralization. Finally, this review proposes future development directions and strategies to address these challenges. This review serves as a directional reference for future research on CO2 mineralization.
Article type: Review article
Cited as:
Yin Y, Zhang LW, Wang HW, et al. 2025. Recent Progress in CO2 Mineralization to Mitigate CO2 Emissions: A Review. GeoStorage, 1(2), 91-112.
https://doi.org/10.46690/gs.2025.01.07
Keywords:
Mineralization, CO2, CGUS, aluminosilicates, basalt, industrial wastesReferences
Abdulelah H, Al-Yaseri A, Ali M, et al. 2021. CO₂/Basalt's interfacial tension and wettability directly from gas density: Implications for Carbon Geo-sequestration. Journal of Petroleum Science and Engineering, 204: 108683. https://doi.org/10.1016/j.petrol.2021.108683.
Ajoma E, Saira, Sungkachart T, et al. 2020. Water-saturated CO₂ injection to improve oil recovery and CO₂ storage. Applied Energy, 266: 114853. https://doi.org/10.1016/j.apenergy.2020.114853.
Al-Yaseri A, Ali M, Abbasi GR, et al. 2021. Enhancing CO₂ storage capacity and containment security of basaltic formation using silica nanofluids. International Journal of Greenhouse Gas Control, 112: 103516. https://doi.org/10.1016/j.ijggc.2021.103516.
Al-Yaseri A, Ali M, Ali M, et al. 2021. Western Australia basalt-CO₂-brine wettability at geo-storage conditions. Journal of Colloid and Interface Science, 603: 165–171. https://doi.org/10.1016/j.jcis.2021.06.078.
Ali M, Arif M, Sahito MF, et al. 2019. CO₂-wettability of sandstones exposed to traces of organic acids: Implications for CO₂ geo-storage. International Journal of Greenhouse Gas Control, 83: 61–68. https://doi.org/10.1016/j.ijggc.2019.02.002.
Ali M, Yekeen N, Alanazi A, et al. 2023. Saudi Arabian basalt / CO₂ / brine wettability: Implications for CO₂. Journal of Energy Storage, 62: 106921. https://doi.org/10.1016/j.est.2023.106921.
Alkan H, Cinar Y, Ülker EB. 2010. Impact of capillary pressure, salinity and in situ conditions on CO₂ injection into saline aquifers. Transport in Porous Media. https://doi.org/10.1007/s11242-010-9541-8.
Aradóttir ESP, Sonnenthal EL, Jónsson H. 2012. Development and evaluation of a thermodynamic dataset for phases of interest in CO₂ mineral sequestration in basaltic rocks. Chemical Geology, 304–305: 26–38. https://doi.org/10.1016/j.chemgeo.2012.01.031.
Arbad N, Emadi H, Watson M. 2022. A comprehensive review of geothermal cementing from well integrity perspective. Journal of Petroleum Science and Engineering, 217: 110869. https://doi.org/10.1016/j.petrol.2022.110869.
Awad A, Koster Van Groos AF, Guggenheim S. 2000. Forsteritic olivine: Effect of crystallographic direction on dissolution kinetics. Geochimica et Cosmochimica Acta, 64(10): 1765–1772. https://doi.org/10.1016/S0016-7037(99)00442-1.
Bandstra JZ, Brantley SL. 2008. Surface evolution of dissolving minerals investigated with a kinetic Ising model. Geochimica et Cosmochimica Acta, 72(10): 2587–2600. https://doi.org/10.1016/j.gca.2008.02.023.
Bandstra JZ, Brantley SL. 2008. Data fitting techniques with applications to mineral dissolution kinetics. In: Kinetics of Water-Rock Interaction. p. 211–257. https://doi.org/10.1007/978-0-387-73563-4_6.
Beaulieu E, Goddéris Y, Labat D, et al. 2010. Impact of atmospheric CO₂ levels on continental silicate weathering. Geochemistry, Geophysics, Geosystems, 11. https://doi.org/10.1029/2010GC003078.
Beck J, Feng R, Hall DM, et al. 2016. Effects of H₂S and CO₂ on cement/casing interface corrosion integrity for cold climate oil and gas well applications. ECS Transactions, 72(15): 107–122. https://doi.org/10.1149/ma2016-01/15/946.
Black JR, Carroll SA, Haese RR. 2015. Rates of mineral dissolution under CO₂ storage conditions. Chemical Geology, 399: 134–144. https://doi.org/10.1016/j.chemgeo.2014.09.020.
Blum A, Lasaga A. 1988. Role of surface speciation in the low-temperature dissolution of minerals. Nature, 331: 431-433. https://doi.org/10.1038/331431a0.
Borges E, Souza DP, Ulson De Souza AA, et al. 2007. Prediction of effective diffusivity tensors for bulk diffusion with chemical reactions in porous media. Brazilian Journal of Chemical Engineering. https://doi.org/10.1590/s0104-66322007000100005.
Cao X, Li Q, Xu L. 2023. A review of in situ carbon mineralization in basalt. Journal of Rock Mechanics and Geotechnical Engineering, 16(4): 1–21. https://doi.org/10.1016/j.jrmge.2023.11.010.
Cao X, Li Q, Xu L, et al. 2024. Experiments of CO₂-basalt-fluid interactions and micromechanical alterations: implications for carbon mineralization. Energy and Fuels, 38(9): 6205–6214. https://doi.org/10.1021/acs.energyfuels.4c00202.
Cárdenas-Escudero C, Morales-Flórez V, Pérez-López R, et al. 2011. Procedure to use phosphogypsum industrial waste for mineral CO₂ sequestration. Journal of Hazardous Materials, 196: 431–435. https://doi.org/10.1016/j.jhazmat.2011.09.039.
Carroll SA, Knauss KG. 2005. Dependence of labradorite dissolution kinetics on CO₂(aq), Al(aq), and temperature. Chemical Geology, 217(3-4): 213–225. https://doi.org/10.1016/j.chemgeo.2004.12.008.
Cecen A, Dai H, Yabansu YC, et al. 2018. Material structure-property linkages using three-dimensional convolutional neural networks. Acta Materialia, 146: 76–84. https://doi.org/10.1016/j.actamat.2017.11.053.
Chaïrat C, Schott J, Oelkers EH, et al. 2007. Kinetics and mechanism of natural fluorapatite dissolution at 25°C and pH from 3 to 12. Geochimica et Cosmochimica Acta, 71(24): 5901–5912. https://doi.org/10.1016/j.gca.2007.08.031.
Chen Z, Cang Z, Yang F, et al. 2021. Carbonation of steelmaking slag presents an opportunity for carbon neutral: A review. Journal of CO₂ Utilization, 54: 101738. https://doi.org/10.1016/j.jcou.2021.101738.
Choubineh A, Helalizadeh A, Wood D A. 2019. Estimation of minimum miscibility pressure of varied gas compositions and reservoir crude oil over a wide range of conditions using an artificial neural network model. Advances in Geo-Energy Research, 3(1): 52–66. https://doi.org/10.26804/ager.2019.01.04.
Deng H, Gharasoo M, Zhang L, et al. 2022. A perspective on applied geochemistry in porous media: Reactive transport modeling of geochemical dynamics and the interplay with flow phenomena and physical alteration. Applied Geochemistry, 146: 105445. https://doi.org/10.1016/j.apgeochem.2022.105445.
Dessert C, Dupré B, Gaillardet J, et al. 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, 202(3-4): 257–273. https://doi.org/10.1016/j.chemgeo.2002.10.001.
Duan D, Song H, Wei F, et al. 2024. Mechanical properties of solid waste-based composite cementitious system enhanced by CO₂ modification. Construction and Building Materials, 426: 136187. https://doi.org/10.1016/j.conbuildmat.2024.136187.
Ebrahimi A, Saffari M, Hong Y, et al. 2018. Mineral sequestration of CO₂ using saprolite mine tailings in the presence of alkaline industrial wastes. Journal of Cleaner Production, 188: 686–697. https://doi.org/10.1016/j.jclepro.2018.04.046.
Ebrahimi A, Saffari M, Milani D, et al. 2017. Sustainable transformation of fly ash industrial waste into a construction cement blend via CO₂ carbonation. Journal of Cleaner Production, 156: 660–669. https://doi.org/10.1016/j.jclepro.2017.04.037.
Edouard MN, Okere CJ, Ejike C, et al. 2023. Comparative numerical study on the co-optimization of CO₂ storage and utilization in EOR, EGR, and EWR: Implications for CCUS project development. Applied Energy, 347: 121448. https://doi.org/10.1016/j.apenergy.2023.121448.
Ennis-King J, Paterson L. 2007. Coupling of geochemical reactions and convective mixing in the long-term geological storage of carbon dioxide. International Journal of Greenhouse Gas Control, 1(1): 86–93. https://doi.org/10.1016/S1750-5836(07)00034-5.
Flaathen TK, Gislason SR, Oelkers EH. 2010. The effect of aqueous sulphate on basaltic glass dissolution rates. Chemical Geology, 277(3-4): 345–354. https://doi.org/10.1016/j.chemgeo.2010.08.018.
Frisbee NM, Hossner LR. 1995. Siderite Weathering in Acidic Solutions under Carbon Dioxide, Air, and Oxygen. Journal of Environmental Quality, 24(5): 856–860. https://doi.org/10.2134/jeq1995.00472425002400050010x.
Gan M, Zhang L, Miao X, et al. 2020. Application of computed tomography (CT) in geologic CO₂ utilization and storage research: A critical review. Journal of Natural Gas Science and Engineering, 83: 103591. https://doi.org/10.1016/j.jngse.2020.103591.
Gan M, Zhang L, Wang Y, et al. 2025. Discovery of a surge in alteration depth of wellbore cement exposed to high concentration CO₂ from 28 days to 56 days. Geoenergy Science and Engineering, 253: 213970. https://doi.org/10.1016/j.geoen.2025.213970.
Gautier JM, Oelkers EH, Schott J. 2001. Are quartz dissolution rates proportional to B.E.T. surface areas? Geochimica et Cosmochimica Acta, 65(7): 1059–1070. https://doi.org/10.1016/S0016-7037(00)00570-6.
Geloni C, Giorgis T, Battistelli A. 2011. Modeling of Rocks and Cement Alteration due to CO₂ Injection in an Exploited Gas Reservoir. Transport in Porous Media, 90(1): 183–200. https://doi.org/10.1007/s11242-011-9714-0.
Ghanbarian B, Hunt AG. 2017. Fractals: Concepts and applications in geosciences. Fractals: Concepts and Applications in Geosciences. https://doi.org/10.1201/9781315152264.
Giammar DE, Bruant RG, Peters CA. 2005. Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. Chemical Geology, 217(3-4): 257–276. https://doi.org/10.1016/j.chemgeo.2004.12.013.
Gislason SR, Oelkers EH. 2003. Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochimica et Cosmochimica Acta, 67(20): 3817–3832. https://doi.org/10.1016/S0016-7037(00)00176-5.
Gíslason SR, Sigurdardóttir H, Aradóttir ES, et al. 2018. A brief history of CarbFix: Challenges and victories of the project's pilot phase. Energy Procedia, 146: 103–114. https://doi.org/10.1016/j.egypro.2018.07.014.
Gislason S R, Wolff-Boenisch D, Stefansson A, et al. 2010. Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project. International Journal of Greenhouse Gas Control, 4(3): 537–545. https://doi.org/10.1016/j.ijggc.2009.11.013.
Goldberg D, Slagle AL. 2009. A global assessment of deep-sea basalt sites for carbon sequestration. Energy Procedia, 1(1): 3675–3682. https://doi.org/10.1016/j.egypro.2009.02.165.
Golubev SV, Pokrovsky OS, Schott J. 2005. Experimental determination of the effect of dissolved CO₂ on the dissolution kinetics of Mg and Ca silicates at 25 °C. Chemical Geology, 217(3-4): 227–238. https://doi.org/10.1016/j.chemgeo.2004.12.011.
Grandstaff DE. 1978. Changes in surface area and morphology and the mechanism of forsterite dissolution. Geochimica et Cosmochimica Acta, 42(12): 1899–1901. https://doi.org/10.1016/0016-7037(78)90245-4.
Grünhäuser Soares E, Castro-Gomes J, Sitarz M, et al. 2022. Feasibility for co-utilisation of Carbonated Reactive Magnesia Cement (CRMC) and industrial wastes in circular economy and CO₂ mineralisation. Construction and Building Materials, 323: 126488. https://doi.org/10.1016/j.conbuildmat.2022.126488.
Gudbrandsson S, Wolff-Boenisch D, Gislason SR, et al. 2014. Experimental determination of plagioclase dissolution rates as a function of its composition and pH at 22°C. Geochimica et Cosmochimica Acta, 139: 154–172. https://doi.org/10.1016/j.gca.2014.04.028.
Gudbrandsson S, Wolff-Boenisch D, Gíslason SR, et al. 2008. Dissolution rates of crystalline basalt at pH 4 and 10 and 25-75°C. Mineralogical Magazine, 72(1): 155–158. https://doi.org/10.1180/minmag.2008.072.1.155.
Gunter WD, Perkins E, McCann TJ. 1993. Aquifer disposal of CO₂-rich gases: Reaction design for added capacity. Energy Conversion and Management, 34(9-11): 941–948. https://doi.org/10.1016/0196-8904(93)90040-H.
Gysi AP, Stefánsson A. 2012. CO₂-water-basalt interaction. Low temperature experiments and implications for CO₂ sequestration into basalts. Geochimica et Cosmochimica Acta, 81: 129–152. https://doi.org/10.1016/j.gca.2012.01.012.
Han G, Han WS, Kim KY, et al. 2019. Roles of fault structures and regional formations on CO₂ migration and distribution in shallow saline aquifer in Green River, Utah. Journal of Hydrology, 570: 786–801. https://doi.org/10.1016/j.jhydrol.2019.01.027.
Hänchen M, Prigiobbe V, Storti G, et al. 2006. Dissolution kinetics of fosteritic olivine at 90-150 °C including effects of the presence of CO₂. Geochimica et Cosmochimica Acta, 70(17): 4403–4416. https://doi.org/10.1016/j.gca.2006.06.1560.
Hellevang H, Pham VTH, Aagaard P. 2013. Kinetic modelling of CO₂-water-rock interactions. International Journal of Greenhouse Gas Control, 15: 3–15. https://doi.org/10.1016/j.ijggc.2013.01.027.
Hu Y, Liu W, Sun J, et al. 2016. Structurally improved CaO-based sorbent by organic acids for high temperature CO₂ capture. Fuel, 167: 17–24. https://doi.org/10.1016/j.fuel.2015.11.048.
Iglauer S, Al-Yaseri A. 2021. Improving basalt wettability to de-risk CO₂ geo-storage in basaltic formations. Advances in Geo-Energy Research, 5(3): 347–350. https://doi.org/10.46690/AGER.2021.03.09.
Intergovernmental Panel on Climate Change (IPCC). 2022. Global warming of 1.5°C: IPCC special report on impacts of global warming of 1.5°C above pre-industrial levels in scenario of strengthening response to climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781009157940.
IPCC. 2023. AR6 Synthesis Report: Climate Change 2023. Cambridge. https://www.ipcc.ch/report/sixth-assessment-report-cycle/.
Izgec O, Demiral B, Bertin H, et al. 2008. CO₂ injection into saline carbonate aquifer formations II: Comparison of numerical simulations to experiments. Transport in Porous Media. https://doi.org/10.1007/s11242-007-9160-1.
Jacquemet N, Pironon J, Lagneau V, et al. 2012. Armouring of well cement in H₂S-CO₂ saturated brine by calcite coating - Experiments and numerical modelling. Applied Geochemistry, 27(4): 782–795. https://doi.org/10.1016/j.apgeochem.2011.12.004.
Jang K, Moulay I, Lee D, et al. 2025. Sustainable conversion of oyster shell waste into high-purity calcium carbonate via CO₂ mineralization. Journal of Environmental Chemical Engineering, 13(1): 115099. https://doi.org/10.1016/j.jece.2024.115099.
Jarvis K, Carpenter RW, Windman T, et al. 2009. Reaction mechanisms for enhancing mineral sequestration of CO₂. Environmental Science & Technology, 43(16): 6314–6319. https://doi.org/10.1021/es8033507.
Jeschke AA, Dreybrodt W. 2002. Dissolution rates of minerals and their relation to surface morphology. Geochimica et Cosmochimica Acta, 66(17): 3055–3062. https://doi.org/10.1016/S0016-7037(02)00893-1.
Johnson JW, Nitao JJ, Morris JP. 2005. Reactive transport modeling of cap-rock integrity during natural and engineered CO₂ storage. In: Carbon Dioxide Capture for Storage in Deep Geologic Formations - Results from the CO₂ Capture Project. p. 787–813. https://doi.org/10.1016/B978-008044570-0/50134-3.
Johnson K. 1992. Regulation update - clean water & phosphogypsum. Proceedings of the 42nd Annual Meeting - Fertilizer Industry Round Table: 1992.
Kaithwas A, Prasad M, Kulshreshtha A, et al. 2012. Industrial wastes derived solid adsorbents for CO₂ capture: A mini review. Chemical Engineering Research and Design, 90(10): 1632–1641. https://doi.org/10.1016/j.cherd.2012.02.011.
Kammerer S, Borho I, Jung J, et al. 2023. Review: CO₂ capturing methods of the last two decades. International Journal of Environmental Science and Technology, 20(7): 8087–8104. https://doi.org/10.1007/s13762-022-04680-0.
Kampman N, Bickle M, Becker J, et al. 2009. Feldspar dissolution kinetics and Gibbs free energy dependence in a CO₂-enriched groundwater system, Green River, Utah. Earth and Planetary Science Letters, 284(3-4): 473–488. https://doi.org/10.1016/j.epsl.2009.05.013.
Kaptan K, Cunha S, Aguiar J. 2024. A Review: Construction and Demolition Waste as a Novel Source for CO₂ Reduction in Portland Cement Production for Concrete. Sustainability, 16(2): 585. https://doi.org/10.3390/su16020585.
Karishma S, Kamalesh R, Saravanan A, et al. 2024. A review on recent advancements in biochemical fixation and transformation of CO₂ into constructive products. Biochemical Engineering Journal, 208: 109366. https://doi.org/10.1016/j.bej.2024.109366.
Knauss KG, Johnson JW, Steefel CI. 2005. CO₂ sequestration in the Frio Fm., TX: Evaluation of the impact of CO₂, co-contaminant gas, aqueous fluid and reservoir rock interactions. In: Second Annual Conference on Carbon Sequestration.
Kravchenko E, Sauerwein M, Besklubova S, et al. 2024. A comparative life cycle assessment of recycling waste concrete powder into CO₂-Capture products. Journal of Environmental Management, 352: 119947. https://doi.org/10.1016/j.jenvman.2023.119947.
Kresge CT, Roth WJ, Vartuli JC, et al. 1992. Control of dissolution rates of orthosilicate minerals by divalent metal-oxygen bonds. Nature, 355: 157-159. https://doi.org/10.1038/355157a0.
Kumar A, Shrivastava JP. 2019. Carbon capture induced changes in Deccan basalt: a mass-balance approach. Greenhouse Gases: Science and Technology, 9(6): 1158–1180. https://doi.org/10.1002/ghg.1923.
Kump LR, Brantley SL, Arthur MA. 2000. Chemical weathering, atmospheric CO₂ and climate. Annual Review of Earth and Planetary Sciences, 28: 611–667. https://doi.org/10.1146/annurev.earth.28.1.611.
Kuoribo E, Shokry H, Mahmoud H. 2024. Attaining material circularity in recycled construction waste to produce sustainable concrete blocks for residential building applications. Journal of Building Engineering, 96: 110503. https://doi.org/10.1016/j.jobe.2024.110503.
Kusin FM, Syed Hasan SNM, Molahid VLM, et al. 2024. Dual adoption opportunities and prospects for mining and industrial waste recovery through an integrated carbon capture, utilization and storage. Sustainable Production and Consumption, 48: 181–204. https://doi.org/10.1016/j.spc.2024.05.012.
Kutchko BG, Lopano CL, Strazisar BR, et al. 2015. Impact of oil well cement exposed to H₂S saturated fluid and gas at high temperatures and pressures: implications for acid gas injection and co-sequestration. Journal of Sustainable Energy Engineering, 3(1): 80–101. https://doi.org/10.7569/jsee.2015.629509.
Lasaga AC. 1984. Chemical kinetics of water-rock interactions. Geochimica et Cosmochimica Acta, 48(7): 4009–4025. https://doi.org/10.1029/JB089iB06p04009.
Lecolier E, Rivereau A, Ferrer N, et al. 2006. Durability of oilwell cement formulations aged in H₂S-containing fluids. Proceedings of the IADC/SPE Drilling Conference, 25(01):90-95. https://doi.org/10.2118/99105-PA.
Lee RP, Seidl LG, Huang Q, et al. 2021. An analysis of waste gasification and its contribution to China's transition towards carbon neutrality and zero waste cities. Journal of Fuel Chemistry and Technology, 49(8): 1057–1076. https://doi.org/10.1016/S1872-5813(21)60093-2.
Lehmann J, Possinger A. 2020. Atmospheric CO₂ removed by rock weathering. Nature, 583(7815): 204–205. https://doi.org/10.1038/d41586-020-01965-7.
Lei Z, Zhang Y, Zhou L, et al. 2021. Numerical simulation of CO₂ mineral sequestration in basalt reservoir through an abandoned oil well: a case study in Xujiaweizi area, Northeast China. Environmental Earth Sciences, 80(3): 1–22. https://doi.org/10.1007/s12665-021-09876-0.
Li Z, Chen J, Lv Z, et al. 2023. Evaluation on direct aqueous carbonation of industrial/mining solid wastes for CO₂ mineralization. Journal of Industrial and Engineering Chemistry, 122: 359–365. https://doi.org/10.1016/j.jiec.2023.02.036.
Li Z, Gu T, Guo X, et al. 2015. Characterization of the unidirectional corrosion of oilwell cement exposed to H₂S under high-sulfur gas reservoir conditions. RSC Advances, 5(87): 71529–71536. https://doi.org/10.1039/c5ra12481f.
Lin Z, Liu K, Liu J, et al. 2021. Numerical model for geothermal energy utilization from double pipe heat exchanger in abandoned oil wells. Advances in Geo-Energy Research, 5(2): 212–221. https://doi.org/10.46690/ager.2021.02.10.
Tian LN. 2002. Comprehensive Utilization of Phosphogypsum. Chemical Industry and Engineering Progress, 21(1):56-59.
Lindeberg E, Wessel-Berg D. 1997. Vertical convection in an aquifer column under a gas cap of CO₂. Energy Conversion and Management, 38: S229–S234. https://doi.org/10.1016/S0196-8904(96)00274-9.
Liu D, Agarwal R, Li Y, et al. 2019. Reactive transport modeling of mineral carbonation in unaltered and altered basalts during CO₂ sequestration. International Journal of Greenhouse Gas Control, 85: 109–120. https://doi.org/10.1016/j.ijggc.2019.04.006.
Liu J, Cheng L, Jin H, et al. 2024. Sustainable utilization of concrete slurry waste in eco-friendly artificial lightweight cold-bonded aggregates: An alternative pathway for efficiently sequestrating CO₂. Construction and Building Materials, 421: 135759. https://doi.org/10.1016/j.conbuildmat.2024.135759.
Liu W, Teng L, Rohani S, et al. 2021. CO₂ mineral carbonation using industrial solid wastes: A review of recent developments. Chemical Engineering Journal, 416: 129093. https://doi.org/10.1016/j.cej.2021.129093.
Liu Z, Luo S, Liu S, et al. 2025. Revealing the underlying mechanism behind CO₂ curing light porous solid-waste based concrete. Construction and Building Materials, 465: 140129. https://doi.org/10.1016/j.conbuildmat.2025.140129.
Loubser MJ. 2013. Weathering of basalt and sandstone by wetting and drying: A process isolation study. Geografiska Annaler: Series A, Physical Geography, 95(4): 295–304. https://doi.org/10.1111/geoa.12023.
Luan C, Zhou A, Li Y, et al. 2024. CO₂ avoidance cost of fly ash geopolymer concrete. Construction and Building Materials, 416: 135193. https://doi.org/10.1016/j.conbuildmat.2024.135193.
Luhmann AJ, Tutolo BM, Bagley BC, et al. 2017. Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO₂-rich brine. Water Resources Research, 53(3): 1908–1927. https://doi.org/10.1002/2016WR019216.
Luo S, Gao S, Yang L, et al. 2024. Enhancing coal gangue aggregates with fly ash-cement slurry: Synergistic effects of CO₂ mineralization on physical and mechanical properties. Construction and Building Materials, 440: 137389. https://doi.org/10.1016/j.conbuildmat.2024.137389.
Maher K, Chamberlain C. 2014. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science, 343(6178):1502-1504. https://doi.org/10.1126/science.125077.
Marieni C, Voigt M, Clark DE, et al. 2021. Mineralization potential of water-dissolved CO₂ and H₂S injected into basalts as function of temperature: Freshwater versus Seawater. International Journal of Greenhouse Gas Control, 109: 103357. https://doi.org/10.1016/j.ijggc.2021.103357.
Matter JM, Broecker WS, Gislason SR, et al. 2011. The CarbFix Pilot Project - Storing carbon dioxide in basalt. Energy Procedia, 4: 5579–5585. https://doi.org/10.1016/j.egypro.2011.02.546.
Mayerich D, Sun R, Guo J. 2022. Deep Learning. In: Microscope Image Processing, Second Edition. p. 437–456. https://doi.org/10.1016/B978-0-12-821049-9.00015-0.
Mcgrail B, Ho A, Reidel S, et al. 2003. Use and features of basalt formations for geologic sequestration. Greenhouse Gas Control Technologies - 6th International Conference, 2: 1637–1640. https://doi.org/10.1016/b978-008044276-1/50264-6.
McGrail BP, Schaef HT, Spane FA, et al. 2017. Field validation of supercritical CO₂ reactivity with basalts. Environmental Science & Technology Letters, 4(1): 6–10. https://doi.org/10.1021/acs.estlett.6b00387.
Metz V, Amram K, Ganor J. 2005. Stoichiometry of smectite dissolution reaction. Geochimica et Cosmochimica Acta, 69(7): 1755–1772. https://doi.org/10.1016/j.gca.2004.09.027.
Miocic JM, Johnson G, Gilfillan SMV. 2014. Fault seal analysis of a natural CO₂ reservoir in the Southern North Sea. Energy Procedia, 63: 3364–3370. https://doi.org/10.1016/j.egypro.2014.11.365.
Moore J, Lichtner PC, White AF, et al. 2012. Using a reactive transport model to elucidate differences between laboratory and field dissolution rates in regolith. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2012.03.021.
Moosdorf N, Renforth P, Hartmann J. 2014. Carbon dioxide efficiency of terrestrial enhanced weathering. Environmental Science & Technology, 48(9): 4809–4816. https://doi.org/10.1021/es4052022.
Morales-Flórez V, Santos A, Lemus A, et al. 2011. Artificial weathering pools of calcium-rich industrial waste for CO₂ sequestration. Chemical Engineering Journal, 166(1): 132–137. https://doi.org/10.1016/j.cej.2010.10.039.
Morrow CP, Kubicki JD, Mueller KT, et al. 2010. Description of Mg²⁺ release from forsterite using ab initio methods. The Journal of Physical Chemistry C, 114(12): 5417–5428. https://doi.org/10.1021/jp9057719.
Morse JW, Arvidson RS. 2002. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Science Reviews, 58(1-2): 51–84. https://doi.org/10.1016/S0012-8252(01)00083-6.
Munz IA, Brandvoll Ø, Haug TA, et al. 2012. Mechanisms and rates of plagioclase carbonation reactions. Geochimica et Cosmochimica Acta, 77: 27–51. https://doi.org/10.1016/j.gca.2011.10.036.
Naguib HM. 2024. CO₂ capture and storage in solid waste and low-carbon reactants for sustainable construction composites. Egyptian Journal of Chemistry, 67(2): 439–450. https://doi.org/10.21608/EJCHEM.2024.260742.9150.
Nakao A, Morlando D, Knuutila HK. 2025. Techno-economic assessment of the multi-absorber approach at an industrial site with multiple CO₂ sources. International Journal of Greenhouse Gas Control, 142: 104326. https://doi.org/10.1016/j.ijggc.2025.104326.
Navarro Á, Fonts I, Ruiz J, et al. 2025. The role of biogenic waste composition on pyrolysis: Part II -- Char CO₂ adsorption capacity. Biomass and Bioenergy, 197: 107775. https://doi.org/10.1016/j.biombioe.2025.107775.
Niu Y, Li T, Barzagli F, et al. 2024. Fly ash as a cost-effective catalyst to promote sorbent regeneration for energy efficient CO₂ capture. Energy, 294: 130890. https://doi.org/10.1016/j.energy.2024.130890.
Noack Y, Colin F, Nahon D, et al. 1993. Secondary-mineral formation during natural weathering of pyroxene; review and thermodynamic approach. American Journal of Science, 293(2): 111–134. https://doi.org/10.2475/ajs.293.2.111.
Noiriel C, Soulaine C. 2021. Pore-scale imaging and modelling of reactive flow in evolving porous media: tracking the dynamics of the fluid-rock interface. Transport in Porous Media, 138(1): 1–30. https://doi.org/10.1007/s11242-021-01613-2.
Oelkers EH. 2001. An experimental study of forsterite dissolution rates as a function of temperature and aqueous Mg and Si concentrations. Chemical Geology, 175(3-4): 485–494. https://doi.org/10.1016/S0009-2541(00)00352-1.
Oelkers EH, Butcher R, Pogge von Strandmann PAE, et al. 2019. Using stable Mg isotope signatures to assess the fate of magnesium during the in situ mineralisation of CO₂ and H₂S at the CarbFix site in SW-Iceland. Geochimica et Cosmochimica Acta, 245: 542–555. https://doi.org/10.1016/j.gca.2018.11.011.
Oelkers EH, Cole DR. 2008. Carbon dioxide sequestration: A solution to a global problem. Elements, 4(5): 305–310. https://doi.org/10.2113/gselements.4.5.305.
Oelkers EH, Gislason SR. 2001. The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11. Geochimica et Cosmochimica Acta, 65(21): 3671–3681. https://doi.org/10.1016/S0016-7037(01)00664-0.
Olsen AA, Donald Rimstidt J. 2008. Oxalate-promoted forsterite dissolution at low pH. Geochimica et Cosmochimica Acta, 72(7): 1758–1766. https://doi.org/10.1016/j.gca.2007.12.026.
Peng J, Xia B. 2024. Multi-field and multi-scale dynamic numerical modeling of supercritical CO₂ and fly ash mineralization. Applied Thermal Engineering, 257: 124195. https://doi.org/10.1016/j.applthermaleng.2024.124195.
Pham THV, Aagaard P, Hellevang H. 2014. On the potential for CO₂ mineral storage in continental flood basalts-phreeqc batch and 1d diffusion-reaction simulations. In: Carbon Capture Storage CO₂ Management Technol. p. 178–202. https://doi.org/10.1201/b16845.
Phukan M, Vu HP, Haese RR. 2021. Mineral dissolution and precipitation reactions and their net balance controlled by mineral surface area: An experimental study on the interactions between continental flood basalts and CO₂-saturated water at 80 bars and 60 °C. Chemical Geology, 559: 119909. https://doi.org/10.1016/j.chemgeo.2020.119909.
Pogge von Strandmann PAE, Burton KW, Snæbjörnsdóttir SO, et al. 2019. Rapid CO₂ mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nature Communications, 10(1): 1–8. https://doi.org/10.1038/s41467-019-10003-8.
Prigiobbe V, Costa G, Baciocchi R, et al. 2009. The effect of CO₂ and salinity on olivine dissolution kinetics at 120 °C. Chemical Engineering Science, 64(14): 3510–3515. https://doi.org/10.1016/j.ces.2009.04.035.
Raganati F, Miccio F, Iervolino G, et al. 2024. Waste-derived tuff for CO₂ Capture: Enhanced CO₂ adsorption performances by Cation-Exchange tailoring. Journal of Industrial and Engineering Chemistry, 138: 153–164. https://doi.org/10.1016/j.jiec.2024.03.049.
Rahman MJ, Fawad M, Chan Choi J, et al. 2022. Effect of overburden spatial variability on field-scale geomechanical modeling of potential CO₂ storage site Smeaheia, offshore Norway. Journal of Natural Gas Science and Engineering, 99: 104453. https://doi.org/10.1016/j.jngse.2022.104453.
Rahmani O. 2020. An experimental study of accelerated mineral carbonation of industrial waste red gypsum for CO₂ sequestration. Journal of CO₂ Utilization, 35: 265–271. https://doi.org/10.1016/j.jcou.2019.10.005.
Rahmani O. 2018. CO₂ sequestration by indirect mineral carbonation of industrial waste red gypsum. Journal of CO₂ Utilization, 27: 374–380. https://doi.org/10.1016/j.jcou.2018.08.017.
Ramasenya K, Oladipo B, Katambwe VN, et al. 2025. Comparative study of direct and indirect aqueous mineral carbonation of construction and demolition waste fines for CO₂ sequestration. Journal of Environmental Chemical Engineering, 13(1): 117754. https://doi.org/10.1016/j.jece.2025.117754.
Rani N, Pathak V, Shrivastava JP. 2013. CO₂ mineral trapping: an experimental study on the carbonation of basalts from the eastern Deccan Volcanic. Procedia Earth and Planetary Science, 7: 806–809. https://doi.org/10.1016/j.proeps.2013.03.069.
Ravichandran P, Rampradheep GS, Jagan S. 2024. Sustainable treatment approach to dumped construction waste with acids and CO₂ for its effective re-utilization in concrete. Global NEST Journal, 26. https://doi.org/10.30955/gnj.005540.
Ren C, Wang W, Yao Y, et al. 2020. Complementary use of industrial solid wastes to produce green materials and their role in CO₂ reduction. Journal of Cleaner Production, 252: 119840. https://doi.org/10.1016/j.jclepro.2019.119840.
Rimstidt JD, Brantley SL, Olsen AA. 2012. Systematic review of forsterite dissolution rate data. Geochimica et Cosmochimica Acta, 99: 159–178. https://doi.org/10.1016/j.gca.2012.09.019.
Rosenbauer RJ, Thomas B, Bischoff JL, et al. 2012. Carbon sequestration via reaction with basaltic rocks: Geochemical modeling and experimental results. Geochimica et Cosmochimica Acta, 89: 116–133. https://doi.org/10.1016/j.gca.2012.04.042.
Rosso JJ, Rimstidt JD. 2000. A high resolution study of forsterite dissolution rates. Geochimica et Cosmochimica Acta, 64(5): 797–811. https://doi.org/10.1016/S0016-7037(99)00354-3.
Sahimi M, Hashemi M. 2001. Wavelet identification of the spatial distribution of fractures. Geophysical Research Letters, 28(4): 611–614. https://doi.org/10.1029/2000GL011961.
Schaef HT, McGrail BP, Owen AT. 2011. Basalt reactivity variability with reservoir depth in supercritical CO₂ and aqueous phases. Energy Procedia, 4: 4977–4984. https://doi.org/10.1016/j.egypro.2011.02.468.
Schwartz MO. 2022. Can CO₂ sequestration in basalt efficiently reduce greenhouse gas emission? Environmental Technology, 43(8): 1082–1092. https://doi.org/10.1080/09593330.2020.1815859.
Schwartz MO. 2018. Le nouveau projet Wallula CO₂ pourrait relancer l'ancien projet de stockage de déchets nucléaires dans les basaltes de la Columbia River (ouest des Etats-Unis d'Amérique). Hydrogeology Journal, 26(1): 3–6. https://doi.org/10.1007/s10040-017-1632-y.
Senthilkumar AK, Kumar M, Kader MA, et al. 2025. Unveiling the CO₂ adsorption capabilities of carbon nanostructures from biomass waste: An extensive review. Carbon Capture Science & Technology, 14: 100339. https://doi.org/10.1016/j.ccst.2024.100339.
Seyama H, Soma M, Tanaka A. 1996. Surface characterization of acid-leached olivines by X-ray photoelectron spectroscopy. Chemical Geology, 129(3-4): 209–216. https://doi.org/10.1016/0009-2541(95)00142-5.
Siegel DI, Pfannkuch HO. 1984. Silicate mineral dissolution at pH 4 and near standard temperature and pressure. Geochimica et Cosmochimica Acta, 48(2): 197–201. https://doi.org/10.1016/0016-7037(84)90362-4.
Sigfússon B, Arnarson MP, Snæbjörnsdóttir SÓ, et al. 2018. Reducing emissions of carbon dioxide and hydrogen sulphide at Hellisheidi power plant in 2014-2017 and the role of CarbFix in achieving the 2040 Iceland climate goals. Energy Procedia, 146: 135–145. https://doi.org/10.1016/j.egypro.2018.07.018.
Singh S, Maiti S, Bisht RS, et al. 2024. Large CO₂ reduction and enhanced thermal performance of agro-forestry, construction and demolition waste based fly ash bricks for sustainable construction. Scientific Reports, 14(1): 1–15. https://doi.org/10.1038/s41598-024-59012-8.
Sjöberg EL, Rickard DT. 1985. The effect of added dissolved calcium on calcite dissolution kinetics in aqueous solutions at 25°C. Chemical Geology, 49(1-3): 405–413. https://doi.org/10.1016/0009-2541(85)90002-6.
Snæbjörnsdóttir S, Oelkers EH, Mesfin K, et al. 2017. The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland. International Journal of Greenhouse Gas Control, 58: 87–102. https://doi.org/10.1016/j.ijggc.2017.01.007.
Snæbjörnsdóttir S, Sigfússon B, Marieni C, et al. 2020. Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment, 1(2): 90–102. https://doi.org/10.1038/s43017-019-0011-8.
Song R, Wu M, Liu J, et al. 2024. Pore scale modeling on microbial hydrogen consumption and mass transfer of multicomponent gas flow in underground hydrogen storage of depleted reservoir. Energy, 306: 132534. https://doi.org/10.1016/j.energy.2024.132534.
Song R, Wu MY, Wang Y, et al. 2023. In-situ X-CT scanning and numerical modeling on the mechanical behavior of the 3D printing rock. Powder Technology, 416: 118240. https://doi.org/10.1016/j.powtec.2023.118240.
Spokas K, Fang Y, Fitts JP, et al. 2019. Collapse of Reacted Fracture Surface Decreases Permeability and Frictional Strength. Journal of Geophysical Research: Solid Earth, 124(12): 12799–12811. https://doi.org/10.1029/2019JB017805.
Squires K, Wolf GH. 2006. Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation. Environmental Science & Technology, 40(15): 4802–4808. https://doi.org/10.1021/es0523340.
Sun S, Zheng X, Liu X, et al. 2022. Global pattern and drivers of water scarcity research: a combined bibliometric and geographic detector study. Environmental Monitoring and Assessment, 194(10). https://doi.org/10.1007/s10661-022-10142-4.
Szczygiel I, Jagoda Z. 2013. Phosphogypsum. The possibilities of the use. Przemysl Chemiczny, 92(6): 970–974.
Tayari F, Blumsack S. 2020. A real options approach to production and injection timing under uncertainty for CO₂ sequestration in depleted shale gas reservoirs. Applied Energy, 263: 114491. https://doi.org/10.1016/j.apenergy.2020.114491.
Tempel RN, Harrison WJ. 2000. Simulation of burial diagenesis in the Eocene Wilcox Group of the Gulf of Mexico basin. Applied Geochemistry, 15(8): 1071–1083. https://doi.org/10.1016/S0883-2927(99)00108-0.
Teo JYQ, Ong A, Tan TTY, et al. 2022. Materials from waste plastics for CO₂ capture and utilisation. Green Chemistry, 24(16): 6086–6099. https://doi.org/10.1039/d2gc02306g.
Tester JW, Worley WG, Robinson BA, et al. 1994. Correlating quartz dissolution kinetics in pure water from 25 to 625°C. Geochimica et Cosmochimica Acta, 58(11): 2407–2420. https://doi.org/10.1016/0016-7037(94)90020-5.
Tetteh EK, Amankwa MO, Yeboah C, et al. 2021. Emerging carbon abatement technologies to mitigate energy-carbon footprint- a review. Cleaner Materials, 2: 100020. https://doi.org/10.1016/j.clema.2021.100020.
Tsakiroglou CD, Terzi K, Aggelopoulos C, et al. 2018. CO₂-induced release of copper and zinc from model soil in water. International Journal of Greenhouse Gas Control, 76: 150–157. https://doi.org/10.1016/j.ijggc.2018.07.003.
Um W, Rod KA, Jung HB. 2012. Geochemical alteration of wellbore cement by CO₂ or CO₂+H₂S reaction during long-term carbon storage. Greenhouse Gases: Science and Technology, 2(5): 352–368. https://doi.org/10.1002/ghg.
Van Herk J, Pietersen HS, Schuiling RD. 1989. Neutralization of industrial waste acids with olivine - The dissolution of forsteritic olivine at 40-70°C. Chemical Geology, 76(3-4): 341–352. https://doi.org/10.1016/0009-2541(89)90102-2.
Verifier SD, Drive AH. 2015. Simulink & Verification and Validation Reference. ReVision.
Vermolen FJ, Gharasoo MG, Zitha PLJ, et al. 2009. Numerical solutions of some diffuse interface problems: The cahn-hilliard equation and the model of Thomas and Windle. International Journal for Multiscale Computational Engineering, 7(6). https://doi.org/10.1615/IntJMultCompEng.v7.i6.40.
Voigt M, Marieni C, Baldermann A, et al. 2021. An experimental study of basalt–seawater–CO₂ interaction at 130°C. Geochimica et Cosmochimica Acta, 308: 21–41. https://doi.org/10.1016/j.gca.2021.05.056.
Vriens B, Seigneur N, Mayer KU, et al. 2020. Scale dependence of effective geochemical rates in weathering mine waste rock. Journal of Contaminant Hydrology. https://doi.org/10.1016/j.jconhyd.2020.103699.
Wang H, Wen B, Xu P, et al. 2025. Effect of CO₂ curing on the strength and microstructure of composite waste glass concrete. Construction and Building Materials, 463: 140042. https://doi.org/10.1016/j.conbuildmat.2025.140042.
Wang K, Xu T, Tian H, et al. 2016. Impact of mineralogical compositions on different trapping mechanisms during long-term CO₂ storage in deep saline aquifers. Acta Geotechnica, 11(5): 1167–1188. https://doi.org/10.1007/s11440-015-0427-3.
Wang X, Pan Y, Fan W, et al. 2025. Fly ash-CaO sorbents prepared via hydration for CO₂ capture in municipal solid waste incineration. Journal of Environmental Chemical Engineering, 13(1): 115103. https://doi.org/10.1016/j.jece.2024.115103.
Wang Y, Mao J, Liu X, et al. 2024. Synergistic mechanisms of magnesium slag coupled with dust removal ash for CO₂ sequestration via direct aqueous carbonation: High mineralization efficiency and optimization of reaction parameters. Construction and Building Materials, 456: 138934. https://doi.org/10.1016/j.conbuildmat.2024.138934.
Wang Y, Zhang Z, Vuik C, et al. 2023. Simulation of CO₂ Storage Using a Parameterization Method for Essential Trapping Physics: FluidFlower Benchmark Study. Transport in Porous Media. https://doi.org/10.1007/s11242-023-01987-5.
Waszczuk P, Lutynski M, Gonzalez Gonzalez MA, et al. 2016. Carbon dioxide sorption on EDTA modified halloysite. E3S Web of Conferences, 8: 01054. https://doi.org/10.1051/e3sconf/20160801054.
Wells RK, Xiong W, Giammar D, et al. 2017. Dissolution and surface roughening of Columbia River flood basalt at geologic carbon sequestration conditions. Chemical Geology, 467: 100–109. https://doi.org/10.1016/j.chemgeo.2017.07.028.
White SK, Spane FA, Schaef HT, et al. 2020. Quantification of CO₂ Mineralization at the Wallula Basalt Pilot Project. Environmental Science & Technology, 54(22): 14609–14616. https://doi.org/10.1021/acs.est.0c05142.
Wogelius RA, Walther J. 1991. Olivine dissolution at 25°C: Effects of pH, CO₂, and organic acids. Geochimica et Cosmochimica Acta, 55(4): 943–954. https://doi.org/10.1016/0016-7037(91)90153-V.
Wolff-Boenisch D, Gislason SR, Oelkers EH, et al. 2004. The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C. Geochimica et Cosmochimica Acta, 68(23): 4843–4858. https://doi.org/10.1016/j.gca.2004.05.027.
Xia B, Peng J. 2024. Investigating the impact of hot steam on the efficiency of fly ash-CO₂ mineralization: DFT analysis and experimental study. Journal of Environmental Chemical Engineering, 12(3): 114135. https://doi.org/10.1016/j.jece.2024.114135.
Xie H, Yue H, Zhu J, et al. 2015. Scientific and engineering progress in CO2 mineralization using industrial waste and natural minerals. Engineering, 1(2): 150–157. https://doi.org/10.15302/J-ENG-2015017.
Xie WH, Li H, Yang M, et al. 2022. CO₂ capture and utilization with solid waste. Green Chemical Engineering, 3(3): 199–209. https://doi.org/10.1016/j.gce.2022.01.002.
Xiong W, Wells RK, Menefee AH, et al. 2017. CO₂ mineral trapping in fractured basalt. International Journal of Greenhouse Gas Control, 66: 204–217. https://doi.org/10.1016/j.ijggc.2017.10.003.
Xu M, Mo L. 2024. Towards sustainable artificial aggregate production using industrial waste and CO₂: A comprehensive review. Journal of Building Engineering, 97: 110823. https://doi.org/10.1016/j.jobe.2024.110823.
Xu R, Zhu F, Zou L, et al. 2024. CO₂ mineralization by typical industrial solid wastes for preparing ultrafine CaCO₃: A review. Green Energy & Environment, 9(6): 1679–1697. https://doi.org/10.1016/j.gee.2024.08.002.
Xu T, Apps JA, Pruess K. 2004. Numerical simulation of CO₂ disposal by mineral trapping in deep aquifers. Applied Geochemistry, 19(7): 917–936. https://doi.org/10.1016/j.apgeochem.2003.11.003.
Xu T, Sonnenthal E, Spycher N, et al. 2008. TOUGHREACT User's guide: A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media, V1.2.1. United States. https://doi.org/10.2172/943451.
Yang ZF, Li J, Liang WF, et al. 2016. On the chemical markers of pyroxenite contributions in continental basalts in Eastern China: Implications for source lithology and the origin of basalts. Earth-Science Reviews, 157: 18–31. https://doi.org/10.1016/j.earscirev.2016.04.001.
Yao Z, Wang Y, Shen J, et al. 2024. Synergistic CO₂ mineralization using coal fly ash and red mud as a composite system. International Journal of Coal Science & Technology, 11, 37. https://doi.org/10.1007/s40789-024-00672-2.
Yekeen N, Padmanabhan E, Sevoo TA, et al. 2020. Wettability of rock/CO₂/brine systems: A critical review of influencing parameters and recent advances. Journal of Industrial and Engineering Chemistry, 88: 1–28. https://doi.org/10.1016/j.jiec.2020.03.021.
Yin Y, Zhang L, Deng H, et al. 2024. A perspective on fluid dynamics and geochemistry coupling in geologic CO₂ storage: Key reactions, reactive transport modeling, and upscaling methods. Gas Science and Engineering, 130, 205421. https://doi.org/10.1016/j.jgsce.2024.205421.
Yu Z, Yang S, Liu L, et al. 2012. An experimental study on water-rock interaction during water flooding in formations saturated with CO₂. Acta Petrolei Sinica, 33(6): 1032–1042. https://doi.org/10.1016/S0883-2927(99)00048-7.
Yuan Q, Zhang J, Zhang S, et al. 2024. An eco-friendly solution for construction and demolition waste: Recycled coarse aggregate with CO₂ utilization. Science of The Total Environment, 950, 175163. https://doi.org/10.1016/j.scitotenv.2024.175163.
Zhang ZW, Cui P, Zhu WW. 2022. Deep Learning on Graphs: A Survey. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2020.2981333.
Zhang H, Dong J, Wei C, et al. 2022. Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO₂ emission reduction. Energy, 239, 122543. https://doi.org/10.1016/j.energy.2021.122543.
Zhang L, Chen L, Hu R, et al. 2022. Subsurface multiphase reactive flow in geologic CO₂ storage: Key impact factors and characterization approaches. Advances in Geo-Energy Research, 6(3): 179–180. https://doi.org/10.46690/ager.2022.03.01.
Zhang L, Dzombak DA, Nakles DV, et al. 2013. Characterization of pozzolan-amended wellbore cement exposed to CO₂ and H₂S gas mixtures under geologic carbon storage conditions. International Journal of Greenhouse Gas Control, 19: 358-368. https://doi.org/10.1016/j.ijggc.2013.09.004.
Zhang S, Xu Y, Bie X, et al. 2024. Mechanisms in CO₂ gasification and co-gasification of combustible solid waste: A critical review. Gas Science and Engineering, 128, 205368. https://doi.org/10.1016/j.jgsce.2024.205368.
Zhang W, Li Y, Xu T, et al. 2009. Long-term variations of CO₂ trapped in different mechanisms in deep saline formations: A case study of the Songliao Basin, China. International Journal of Greenhouse Gas Control, 3(2): 161–180. https://doi.org/10.1016/j.ijggc.2008.07.007.
Zhang Z, Pan SY, Li H, et al. 2020. Recent advances in carbon dioxide utilization. Renewable and Sustainable Energy Reviews, 125, 109799. https://doi.org/10.1016/j.rser.2020.109799.
Zheng LG, Spycher N, Apps J, et al. 2010. Potential impacts of CO₂ leakage on the quality of fresh water aquifers. In: 13th International Symposium on Water-Rock Interaction (WRI) in mexico, Guanajuato*. CRC Press-Taylor & Francis Group. pp:903–906.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2025 GeoStorage

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.