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Abstract:
Deep learning (DL) based on Artificial Neural Networks (ANN) demonstrates robust per-
formance, strong nonlinear mapping capabilities, and powerful self-learning capacities, en-
abling its widespread application in learning and predicting stress-strain constitutive relation-
ships under quasi-static loading paths (e.g., uniaxial/triaxial compression tests). However,
significant gaps remain in applying ANN methods to learn, characterize, or predict consti-
tutive relationships for geotechnical materials under complex multi-cycle dynamic loading
paths. This limitation primarily arises from the nonlinearity, variability, and complexity
inherent in cyclic stress-strain hysteresis loops. This study systematically investigates oil-
well cement sheaths subjected to high-intensity multi-frequency cyclic compression. Sam-
ples were set and cured at four downhole temperatures (25, 90, 115, and 140 ◦C), then tested
under four constant-amplitude loading levels (30%, 50%, 70%, and 90%). A comprehensive
analysis of 480 hysteresis loops from 16 sample groups was conducted, evaluating accumu-
lated plastic strain, dissipation energy proportion, and the proportion of plastic damage en-
ergy. The analysis reveals that conventional fatigue life prediction models fail to effectively
capture the complex evolutionary characteristics of hysteresis loops. Subsequently, the cyclic
stress-strain constitutive relationship was treated as time-series data. Through preprocessing
and cycle-by-cycle segmentation of mechanical test data, single-step rolling prediction of
hysteresis loops was achieved. An LSTM (The Long Short-Term Memory) architecture was
developed to address long-term dependencies and complex nonlinear features in different
hysteresis loops. By constructing a Physics-Informed Neural Network (PINN) that integrates
physical laws and data patterns, the physics-guided learning capability of the improved model
was enhanced. Recursive prediction with additional physical constraints enabled full-process
continuous rolling prediction, demonstrating superior predictive performance. The proposed
methodology provides novel perspectives for advancing intelligent inversion methods in
geotechnical engineering applications under dynamic loading conditions.

1 Introduction

In subsurface oil and gas engineering, hardened oil-well
cement is commonly used as cement sheath with an annular

structure between the casing and the formation, serving as the
primary barrier to maintaining wellbore integrity. This cement
sheath performs multiple critical functions, including sealing
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Tab. 1 Summary of methods for learning and predicting constitutive relationships of geotechnical materials based on artificial
neural network (ANN)

Application Specific Algorithms Descriptions References

Radial basis function neural
network (RBFNN)

The Gaussian function is used as the activation
function.

(Tan and Wang, 2001; Peng
et al., 2008)

Multi-Layer Perceptron (MLP) The information flows forward from the input
nodes to the output nodes.

(Nardin et al., 2003; Banimahd
et al., 2005; Rafiai and Jafari,

2011)
Fully-connected neural

network (FCNN)
All the nodes in one layer are connected to the

neurons in the next layer.
(Gorji et al., 2020)

Quasi-static loading Convolutional neural networks
(CNN)

It can learn based on the shared-weight
architecture of the convolution kernels or

filters.

(Wu et al., 2023; Yang et al.,
2020)

Feedback neural network
(FBN)

Feedback connections from output layer to
input layer.

(Penumadu and Zhao, 1999;
Habibagahi and Bamdad, 2003)

Recurrent neural network
(RNN)

Feedback connections from a hidden and
output layer to input layer.

(Zhu et al., 1998; Romo et al.,
2001)

Long short-term memory
(LSTM)

A gating mechanism utilizing three gates
(input, output, and forget gates).

(Shi et al., 2022; Li et al., 2023)

Genetic algorithm-based neural
network

The genetic algorithm (GA) is applied. (Chen et al., 2004; Johari et al.,
2011)

Back propagation neural
network (BPNN)

The back propagation (BP) algorithm is
applied.

(Ghaboussi and Sidarta, 1998;
Youssef et al., 2006; Rashidian

and Hassanlourad, 2014)
Time-delay neural network

(TDNN)
It can classify patterns with shift-invariance

and model context at each layer of the network.
(Basheer, 2002)

Dynamic loading Temporal Convolutional
Network (TCN)

Comprises dilated causal 1D convolutional
layers that maintain identical input and output

lengths.

(Wang et al., 2022)

Gated recurrent unit (GRU) A gating mechanism utilizing two gates (reset
and update gates).

(Qiu et al., 2021; Zhang et al.,
2021; Xiong et al., 2023)

the annular space between the casing and the formation, pre-
venting fluid migration across different strata by providing zon-
al isolation, and protecting the casing from excessive formation
pressures during drilling and production operations (Karakosta
et al., 2015; Pang et al., 2021). Consequently, maintaining
excellent mechanical properties of the cement sheath over its
entire service life is crucial.

During oil and gas productions, the cement sheath is fre-
quently subjected to high-magnitude, high-frequency cyclic
compressive loads. For example, such cyclic loads arise in deep
shale gas development scenarios involving staged hydraulic
fracturing with high-pressure slurry injection (Gholami et al.,
2016). Similarly, cyclic injection-withdrawal operations in de-
pleted gas reservoir storage facilities and salt cavern gas storage
facilities also fall under the category of cyclic loads. These
cyclic loads can induce progressive, irreversible damage in the
cement sheath in the form of brittle microcracking and plastic
deformation, while the casing and surrounding formation typi-
cally exhibit predominantly elastic recovery during the unload-
ing phase (Eilers et al., 1983; Grabowski and Gillott, 1989).
This mismatch in mechanical deformation leads to gradual
debonding at the cement interfaces, resulting in the formation of
micro-annuli. Such interfacial degradation can cause sustained

casing pressure (SCP) or hydrocarbon leakage, both of which
pose serious risks to well integrity, production, and operational
safety (Diaz et al., 2020). According to case statistics compiled
by the British Geological Survey (BGS) on storage incidents
in gas reservoirs over the past century, the United States has
experienced 14 accidents involving depleted oil and gas reser-
voirs, with wellbore seal failures during injection–withdrawal
operations accounting for approximately 31% of total incidents
due to gas leakage (Evans, 2007; Yin et al., 2024).

Similar to other brittle materials such as concrete and rock,
the fatigue damage and ultimate failure of hardened cement
paste is governed by the initiation and propagation of micro-
cracks (Beaudoin and Feldman, 1985). To further investigate
the fatigue performance of oil-well cement under downhole
cyclic loading conditions have been systematically investigated
by uniaxial and triaxial cyclic loading experiments (Shadravan
et al., 2015; Deng et al., 2020; Yang et al., 2024a) and theoretical
modelling. For instance, Li et al. and Xi et al. successive-
ly compared the fatigue performance of conventional cement
slurries and latex-modified cement slurries in triaxial cyclic
loading tests, and they have consistently observed that oil-well
cement experiences significant cumulative plastic strain when
subjected to high-frequency and high-magnitude cyclic loads
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Tab. 2 HTHP compressive cyclic loading testing plans on oil-well cement slurries considering different loading levels

Testing
number

Curing condition Testing condition

Curing temper-
ature (◦C)

Curing pressure
(MPa)

Testing temper-
ature (◦C)

Confining pres-
sure (MPa)

Number of cy-
cles

Loading level

1 25 20 25 20 30 30%
2 25 20 25 20 30 50%
3 25 20 25 20 30 70%
4 25 20 25 20 30 90%
5 90 20 90 20 30 30%
6 90 20 90 20 30 50%
7 90 20 90 20 30 70%
8 90 20 90 20 30 90%
9 115 20 115 20 30 30%
10 115 20 115 20 30 50%
11 115 20 115 20 30 70%
12 115 20 115 20 30 90%
13 140 20 140 20 30 30%
14 140 20 140 20 30 50%
15 140 20 140 20 30 70%
16 140 20 140 20 30 90%

(Li et al., 2007; Xi et al., 2020). Theoretically, current studies
on the fatigue behavior of brittle materials, including cement,
rock, and concrete, under cyclic loading primarily focus on
reverse S-shaped fatigue life prediction models (Xiao et al.,
2009). These models typically establish the relationship be-
tween a damage variable and fatigue life (in terms of loading
cycles) based on continuum damage mechanics (CDM) or mi-
cromechanical damage theories. Common approaches include
the residual strain method, maximum strain method, dissipated
energy method, acoustic emission cumulative count method,
and ultrasonic wave velocity method (Xiao et al., 2010).

The cyclic constitutive model of oil-well cement can be
constructed by integrating experimental data with theoretical
methods. However, prior experimental research has largely re-
mained at the phenomenological level. The fatigue performance
of oil-well cements, especially under varying mix designs and
downhole temperature–pressure conditions, often requires ex-
tensive and repetitive experimental validation. Theoretically,
while significant efforts have been made in studying cyclic con-
stitutive models, existing fatigue life prediction models often
fail to capture the dynamic stress–strain constitutive behavior
under cyclic loading.

Intelligent inversion methods, including artificial neural
networks (ANNs), are particularly well-suited for capturing
the complex nonlinear mapping between stress and strain in
geotechnical materials. Various well-established ANN models
have been successfully applied to the learning and prediction
of stress–strain relationships under quasi-static uniaxial and
triaxial loading conditions (Gorji et al., 2020; Shi et al., 2022;
Wu et al., 2023; Li et al., 2023), as illustrated in Table 1. Fur-

thermore, the adoption of Physics-informed Neural Networks
(PINN), a deep learning approach capable of unifying data and
physical principles, could further enhance the generalization
capability, applicability, and predictive performance of deep
learning models (Carleo et al., 2019; Karniadakis et al., 2021;
Wang et al., 2023).

However, a comprehensive review of the literature reveals
that current ANN-based approaches to constitutive modeling
are primarily limited to quasi-static loading scenarios (Gorji
et al., 2020; Shi et al., 2022; Wu et al., 2023; Li et al., 2023).
ANN models for describing or predicting the stress–strain
behavior of geotechnical materials under cyclic loading and
unloading conditions remain underdeveloped. Existing studies
are generally limited to relatively simple cases involving on-
ly a small number of loading cycles, typically no more than
three. For instance, Ellis and co-workers were the first to ap-
ply a backpropagation neural network (BPNN) to effectively
learn the constitutive stress–strain relationships of soils sub-
jected to undrained triaxial compression with varying stress
histories, including one cycle of unloading and reloading (El-
lis et al., 1995). Subsequently, in the studies conducted by
Basheer (2000, 2002), both BPNN and time-delay neural net-
work (TDNN) models were used to simulate soil behavior under
stress paths involving single and double unloading–reloading
cycles, ultimately producing high-accuracy predictions of real
soil responses (Basheer, 2000, 2002). All of the above models
adopt a direct learning strategy in which the entire stress–strain
curve is input into the ANN in a single stage. A major limi-
tation of this approach is that, when applied to cyclic loading
scenarios, the complexity of the stress–strain curve increases
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Fig. 1 Compressive cyclic stress–strain curves of oil-well cement slurries considering different loading
levels. Samples at downhole temperatures of (a) 25 °C, (b) 90 °C, (c) 115 °C, and (d) 140 °C

significantly, making it considerably more difficult to achieve
accurate learning outcomes.

In this study, based on the energy balance theory in rock
mechanics, the fatigue characteristics of 480 hysteresis loops
(derived from 16 sets of oil-well cement samples) – including
the accumulated plastic strain, proportion of dissipated energy,
and proportion of plastic damage energy – were analyzed. The
results demonstrated that conventional fatigue life prediction
models are inadequate for capturing the complex evolutionary
characteristics of the hysteresis behavior, thereby underscoring
the necessity of directly constructing constitutive models for
cyclic stress and strain responses. Subsequently, by applying
normalization, down-sampling, and cycle-by-cycle segmenta-
tion to the experimental data obtained under cyclic loading con-
ditions, we introduced, for the first time, a deep learning frame-
work guided by physics-informed mechanisms to the study of
constitutive relationships between cyclic stress and strain. The
methodology and findings presented in this paper collective-
ly form a novel framework for cyclic constitutive modeling,

effectively overcoming the limitations of existing mechanical
constitutive models characterized by complex formulations and
limited applicability.
2 Methodology
2.1 Description of experimental data

A series of cyclic loading experiments were systematically
conducted on oil-well cement samples cured under four down-
hole temperature conditions: 25 ◦C, 90 ◦C, 115 ◦C, and 140 ◦C.
During testing, a confining pressure of 20 MPa was applied.
Four loading levels were selected, corresponding to 30 %, 50 %,
70 %, and 90 % of the peak load, in order to evaluate the
fatigue performance of the cement. The lower limit of the cyclic
load was set at 1.5 kN. The number of loading cycles was
fixed at 30, which is consistent with the maximum number
of fracturing stages typically encountered during multi-stage
hydraulic fracturing in shale gas wells (Gholami et al., 2016).
The experiments were performed under axial force control, with
both loading and unloading rates set at 0.5 kN per second.
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Fig. 2 Schematic of the cyclic stress-strain curve in the i-th cycle

Fig. 3 Workflow for describing and predicting cyclic stress-strain constitutive relationships based on deep
learning architecture

Details of the experimental scheme are provided in Table 2, and
the original data curves are illustrated in Fig. 1.

Previous studies have demonstrated that the stress and strain
curves under cyclic loading exhibit nonlinear characteristics
during both the loading and unloading phases (Shadravan et al.,
2015; Deng et al., 2020; Yang et al., 2024b). As the stress in-

creases during the loading phase, the oil-well cement undergoes
greater plastic deformation, and the stress and strain curve pro-
gressively develops an upward-convex shape. During the un-
loading phase, as the applied stress decreases, the compressed
pores within the cement begin to rebound, resulting in a gradual
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Fig. 4 Schematic of cycle-by-cycle data segmentation and model input-output configuration

Fig. 5 The schematic diagram of the single-step training and prediction process for LSTM model

reduction of the elastic modulus. Consequently, the stress and
strain curve during unloading tends to exhibit a downward-
convex shape. Together, these loading and unloading responses
form the complete cyclic hysteresis loop.

2.2 Complex evolution characteristics of cyclic
hysteresis loops

The mechanical response of oil-well cement under cyclic
loading is critical for evaluating its resistance to fatigue damage
in downhole environments. The shape of the hysteresis loop re-
flects the constitutive behavior between stress and strain during

cyclic loading and unloading, as well as the evolution of me-
chanical parameters such as elastic modulus and energy dissi-
pation (Mayergoyz, 1985). Among these, the energy dissipated
during each cycle characterizes the material’s capacity to resist
internal damage and plastic deformation induced by external
loading (Song et al., 2018). As shown in Fig. 2, a typical stress
and strain curve for the i-th cycle includes a loading path from
point A to point B, followed by an unloading path from point
B through point C to point D. Points A and D correspond to
the residual plastic strains after the (i − 1)-th and i-th cycles,
denoted as εi−1 and εi, respectively. These strains share the
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Fig. 6 The schematic diagram of the single-step training and prediction process for PINN models

same stress valueσmin, which represents the lower bound of the
cyclic load. The stress at point B, denoted as σmax, represents
the upper bound of the cyclic load, and the corresponding strain
is the maximum strain in the i-th cycle,. Using definite integral
methods (Meng et al., 2016), the total input energy dWi, the
recoverable elastic energy , and the dissipated energy for the
i-th cycle can be calculated as follows:

dWe
i =

∫ εmax
i

εi

σi dε (1)

dWi =

∫ εmax
i

εi−1

σ+i dε (2)

dWd
i = dWi − dWe

i =

∫ εmax
i

εi−1

σ+i dε −
∫ εmax

i

εi

σi dε (3)

ηi =
dWd

i

dWi
= 1 −

dWe
i

dWi
(4)

The dissipated energy proportion, denoted as ηi, is defined
as the ratio between the dissipated energy and the total input
energy in the i-th cycle. An increase in ηi indicates that the
cement material has accumulated more plastic strain or internal
damage. The energy dissipated during the loading process is

primarily consumed by mechanisms associated with internal
damage evolution and plastic deformation within the cement
matrix.

To further investigate the evolution patterns of the hysteresis
loop shape, the dissipated energy contained within the loop
can be subdivided based on the theory of viscoelastic defor-
mation. Wu and Li et al. have both pointed out that, during
the unloading phase, if the dissipation of energy due to heat
exchange, thermal radiation, and acoustic emission is neglected,
nonlinear hysteretic behavior can still occur in the stress and
strain response (Wu et al., 2020; Li et al., 2021a). This is pri-
marily caused by interfacial friction between material particles
and the viscosity of pore fluids, resulting in a characteristic
hysteresis loop that is wider in the middle and narrower at both
ends. As shown in Fig.2, the total dissipated energy within a
hysteresis loop consists of two components. The first is the
plastic damage energy, denoted as dWdp

i , which is associated
with residual plastic strain, plastic deformation, and microcrack
development. The second is the damping energy, denoted as
dWdd

i , which represents the energy dissipated by the material in
overcoming viscous resistance. Notably, the unloading curve
of the i-th cycle and the loading curve of the (i + 1)-th cycle
intersect precisely at point C. The path from point C to point D
during unloading and the return from point D to point C during
reloading represent a viscoelastic deformation process. In this
process, no elastic energy is lost, and the energy dissipation is
entirely attributed to the work done by damping forces. The
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Fig. 7 The schematic diagram of the full-cycle prediction process for PINN model

corresponding formulas for calculating the damping energy and
plastic damage energy are given as follows:

dWdd
i =

∫ εC
εi

(σ+i+1 − σ−i )dε (5)

dWdp
i = dWd

i −dWdd
i =

∫ εmax
i

εi−1

σ+i dε−
∫ εmax

i

εi

σ−i dε−
∫ εC
εi

(σ+i+1−σ−i )dε

(6)

Furthermore, the proportion of plastic damage energy, de-
noted as ξ, can be calculated for each sample to quantify the
fraction of the total dissipated energy within each hysteresis
loop that is attributed to plastic deformation and microcrack-
induced damage. This proportion is defined as the ratio of the
plastic damage energy dWdp

i to the total dissipated energy in
the i-th cycle. The corresponding calculation formula is given
as follows:

ζi =
dWdp

i

dWd
i

= 1 −
dWdd

i

dWd
i

(7)

2.3 Development for the physics-informed
neural network

For oil-well cement with the same mix design, the hardened

cement prepared under different curing temperatures exhibits
significantly different material properties. As a result, it be-
comes increasingly difficult to accurately describe the stress
and strain constitutive behavior of high-temperature cement
under cyclic loading and unloading using traditional continuum
mechanics theories, including elastoplastic mechanics and dam-
age mechanics. Compared with traditional constitutive models
of geomaterials based on explicit mathematical equations, ANN
models can effectively approximate stress–strain experimental
curves with complex nonlinear functional relationships. Their
main advantages include the ability to directly train on ex-
perimental data using inputs and outputs (supervised learning)
without any assumptions about the relationship between the
variables, as well as the capacity to learn and train on large
datasets, which further enhances the model’s prediction accu-
racy and applicability as more data are incorporated.

In this study, by employing a deep learning model based on
time-series analysis and further segmenting the cyclic stress and
strain curves according to individual loading cycles, the cyclic
constitutive behavior could be treated as time-series data. This
approach enables investigation into the evolving characteris-
tics of cyclic responses, particularly the hysteresis loops, over
successive loading cycles. The LSTM algorithm was selected
to capture the long-term evolutionary patterns and nonlinear
characteristics inherent in hysteresis loops. Additionally, the
physics-informed constraint method was employed to progres-
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Fig. 8 Accumulated plastic strain of oil-well cement slurries in cyclic stress–strain curves considering different
loading levels and downhole temperatures. Samples at downhole temperatures of (a)25 °C, (b)90 °C,
(c)115 °C, and (d)140 °C

sively enhance both single-step and full-cycle prediction accu-
racy of the cyclic curves. The overall research framework is
outlined in Fig. 3.
2.3.1 Data preprocessing

This process includes data normalization and the unification
of sequence length across all input samples. Normalizing the
input data helps accelerate model training and mitigates issues
related to gradient explosion or vanishing gradients. Experi-

mental data stored in Excel format were read using the Pandas
library, and then scaled to the range of [0, 1] using the Min-
MaxScaler preprocessing function from the Scikit-learn library.
In addition, to ensure consistent sequence length (i.e., number
of time steps) across all samples, integer factor-based down-
sampling was applied. In this study, each cycle was standard-
ized to include 40 loading points and 40 unloading points.
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Fig. 9 Dissipated energy proportion of oil-well cement slurries in cyclic stress–strain curves considering different
loading levels and downhole temperatures. Samples at loading levels of (a)30 %, (b)50 %, (c)70 %, and
(d)90 %

2.3.2 Data division and cycle-by-cycle segmentation

The process also includes the division of the dataset into a
training set and a prediction set, as well as the further segmen-
tation of data by loading cycles. In the training and prediction
set split, the goal is to ensure that the deep learning model
maintains strong generalization capability, allowing it to adapt
effectively to previously unseen data while preserving high
prediction accuracy. To this end, the cyclic loading curves of
3 randomly selected specimens, accounting for 19 % of the
dataset, are designated as the prediction set, while the remaining
13 specimens, representing 81 %, form the training set. Since
each specimen contains 30 loading cycles and each cycle in-
cludes 40 loading points and 40 unloading points, the training
set contains a total of 31,200 data points, and the prediction set

contains 7,200 data points.

To effectively characterize the nonlinear evolution of the
hysteresis loops in the cyclic response curves, the 30 cycles
within each sample were further segmented based on Fig. 4.
This segmentation was implemented using the built-in enu-
merate function in Python to iterate through the cycles and
store the data in batches. Specifically, the model input and
output sequences were defined over segments consisting of five
consecutive loading cycles. A sliding window approach was
applied with a step size of one cycle. For example, cycles one
through five constitute the first segment, cycles two through six
form the second segment, and so on. Based on this method, a
complete cyclic loading curve from one specimen could be di-
vided into 26 segments. As a result, the training set was divided
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Fig. 10 The evolution of the typical cyclic stress–strain curves (hysteresis loops) of cement samples with the
number of cycles

into a total of 338 sequence segments, while the prediction set
contained 78 segments.

The segmentation of the cyclic data by loading cycles enables
the implementation of rolling prediction along the cyclic curve.
However, to complete the prediction mechanism, it is also
necessary to configure a single-step prediction setup for each
sequence segment. Specifically, within each segment consisting
of five consecutive loading cycles, the sequence data from the
first four cycles are used as the model input, while the data from
the fifth cycle serve as the target output for comparison during
both the training and prediction stages.

2.3.3 Development of LSTM model

The deep learning algorithm was implemented using the
open-source Python library Keras. The long short-term memory
(LSTM) algorithm was selected as the foundational model to

learn the long-term evolutionary and nonlinear characteristics
of the cyclic hysteresis loops. This choice is based on the su-
perior performance of LSTM in handling time-series data with
historical dependencies (Zhang et al., 2021). LSTM networks
are particularly effective at capturing long-range dependencies
in sequential data and are equipped with gated units that can
intelligently regulate the flow of information. These gates effec-
tively mitigate the vanishing and exploding gradient problems
commonly encountered in traditional recurrent neural networks
(RNNs) (Chung et al., 2014; Mozaffar et al., 2019).

As defined in Section 2.3.2, four cycles of sequential data
were used as the model input and one cycle of sequential data
was used as the output. Therefore, the input sequence has a
time step length of 320, and the output sequence has a time
step length of 80. Using one loading cycle, equivalent to 80
time steps, as the sliding step for forward rolling, LSTM deep
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Fig. 11 Plastic damage energy proportion of oil-well cement slurries considering different loading levels and
downhole temperatures. Samples at downhole temperatures of (a)25 °C, (b)90 °C, (c)115 °C, and (d)140
°C

Fig. 12 MSE error curves of training and validation sets versus training epochs across different deep learning
models. (a)LSTM model, (b)PINN model

learning model was trained and evaluated on the cyclic con-
stitutive time-series data. Model performance was assessed by
comparing the predicted sequences (shown in red in Fig. 5) with
the experimental results obtained from mechanical tests (shown
in black in Fig. 5). Unlike traditional machine learning models,
DL models start by establishing performance with a baseline
model (e.g., 1–2 layers). Complexity (more layers, units) should

be added incrementally only if it leads to validated improve-
ment, thereby preventing unnecessary over-parameterization.
Hyperparameters were adjusted and the models were optimized
based on the accuracy of this comparison. The optimal hyperpa-
rameters of the LSTM model are summarized in Table 3, which
corresponds to a network structure consisting of seven LSTM
layers. Notably, because the LSTM model does not inherently
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Fig. 13 Single-step prediction performance (partial data) of the prediction set using LSTM and PINN models. (a)
and (b): 140 °C downhole temperature with 90 % loading level; (c) and (d): 140 °C downhole
temperature with 70 % loading level; (e) and (f): 115 °C downhole temperature with 90 % loading level

support significant variation in sequence length between the
input and output, a RepeatVector layer was employed to bridge
the encoder and decoder components. This allows the network
to generate output time-series data with a different length from
the input sequence.

2.3.4 Development of the PINN model

The physics-informed neural network (PINN), a physics-
guided deep learning framework, was proposed by Raissi and
co-workers (Raissi et al., 2019). Unlike traditional neural net-
works, this approach incorporates not only data-driven input-
s but also enforces physical laws or governing equations as
constraints within the training process. By embedding physical
principles into the deep learning model, the PINN framework

enables a unified integration of data and physics, thereby en-
hancing the generalization capability, applicability, and predic-
tive performance of the model (Carleo et al., 2019; Karniadakis
et al., 2021; Wang et al., 2023).

In this study, two types of physics-informed constraints were
employed to integrate physical knowledge into the data-driven
modeling process, aiming to promote deep interdisciplinary
coupling between rock mechanics theory and artificial intel-
ligence. The first approach involves augmenting the training
dataset with synthetic data that are explicitly generated to sat-
isfy known physical laws. This method, referred to as physics-
guided learning (Xie et al., 2021; Zheng et al., 2022), enhances
the model’s ability to learn underlying physical mechanisms
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Fig. 14 Full-cycle prediction performance (partial data) of the prediction set using PINN model. (a): 140 °C
downhole temperature with 90 % loading level; (b): 140 °C downhole temperature with 70 % loading
level; (c): 115 °C downhole temperature with 90 % loading level

Tab. 3 Summary of neural network architecture and hyperparameters of LSTM model

Layer Type Times teps Units/Features Return Sequences Output Shape Remarks

Input Layer 320 2 — (32, 320, 2) —

LSTM 320 256 True (32, 320, 256) —

LSTM 320 512 True (32, 320, 512) —

LSTM 320 256 True (32, 320, 256) —

LSTM — 64 False (32, 64) Last LSTM in
encoder

RepeatVector 80 — — (32, 80, 64) Encoder-decoder
bridge

LSTM 80 128 True (32, 80, 128) First LSTM in
decoder

LSTM 80 256 True (32, 80, 256) —
LSTM

(Output) 80 2 True (32, 80, 2) Final prediction
layer

through guided supervision. The second approach introduces
physical constraints or penalty terms directly into the prediction
process of the deep learning model. This method, often termed
process-guided or physics-constrained learning (Read et al.,
2019; Xie et al., 2022), imposes additional regularization based
on governing equations, which improves the model’s prediction
accuracy and generalization performance. Based on the two

physics-informed constraint methods in single-step prediction
and full-process prediction, they will combine synergistically
to jointly enhance the model’s prediction accuracy and effec-
tiveness.

Specifically, in the single-step training and prediction frame-
work, seven fatigue-related parameters with clear physical sig-
nificance were manually incorporated into the dataset as part
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of the training input. These parameters include the accumu-
lated (residual) plastic strain εi, maximum strain εmax

i , total
input energy dWi, elastic energy dWe

i , dissipated energy dW p
i ,

damping energy dWdd
i , and plastic damage energy dWdp

i . The
inclusion of these features was intended to enhance the model’s
ability to learn underlying physical mechanisms through guided
supervision. To assess the effectiveness of incorporating these
physics-informed features, an ablation study was conducted by
comparing model performance with and without the inclusion
of the new features during training. This comparison provides
quantitative evidence of the value added by the physics-guided
feature integration.

In addition to using the sequential data of four loading cy-
cles (with an input time step length of 320) as input for deep
learning model construction and training, an additional set of
seven fatigue-related physical parameters extracted from the
same four cycles (with an input time step length of 4) was also
introduced as a separate input branch into an auxiliary deep
learning neural network model (Fig. 6). Given the significant
difference in time-step resolution between the sequential and
feature data, constructing independent deep learning models
for each input stream allows the respective output tensors to
be closer in dimension. This setup enhances the contribution
of the physical features by improving their compatibility and
integration during the learning process. A Concatenate layer
was used to merge the output tensors from the long-sequence
and short-feature branches. Following this, a RepeatVector lay-
er was applied to facilitate the transition between the encoder
and decoder components, enabling the generation of output se-
quences with a time step length of 80, which differed from both
input sequences. The training and prediction of the physics-
constrained deep learning model were performed using a sliding
window with a step size of one loading cycle. Model perfor-
mance was evaluated by comparing the predicted sequences
(indicated in red in Fig. 6) with experimental measurements
from mechanical tests (indicated in black in Fig. 6), and the
hyperparameters were tuned accordingly to optimize the model.
Finally, an ablation study was conducted by comparing the
physics-constrained deep learning model with a baseline hy-
brid deep learning model that excludes the feature input. This
comparison assesses whether the inclusion of physics-informed
features improves the model’s capability to describe and predict
the cyclic constitutive behavior of stress and strain. The optimal
hyperparameters of the physics-informed deep learning model
based on the LSTM architecture, which consists of ten LSTM
layers, were summarized in Table 4.
2.3.5 Full-cycle prediction using PINN model

As shown in Fig. 7, full-cycle prediction is achieved using
the physics-informed single-step prediction model through a
recursive forecasting strategy. In this approach, the predicted
sequence from the physics-constrained deep learning model
(shown in red in Fig. 7) is recursively fed as the input for the
subsequent loading cycle, thereby enabling continuous rolling
prediction across the entire cyclic process. The only difference
from the single-step prediction model illustrated in Fig. 6 is
that, before feeding the predicted sequence into the next cycle,
additional physical constraints are applied. These constraints

are imposed on the endpoints of both the loading and unloading
phases within each cycle to suppress the progressive accumu-
lation and amplification of prediction errors during recursive
forecasting. In addition, since the fatigue-related physical fea-
tures also need to be predicted continuously, they are updated
based on the output of the preceding predicted sequence. The
full-cycle prediction utilizes the same network architecture and
optimal hyperparameters as the physics-informed single-step
prediction model. As a result, no additional training or hyper-
parameter tuning is required for implementing the full-cycle
forecasting.
2.3.6 Key parameters and performance evaluation

metrics
In this study, the key hyperparameters were determined

manually through iterative trial-and-error, while other general
hyperparameters were set to their default values. The mean
squared error (MSE) was used as the loss function, and the
model parameters were optimized using the Adam (Adaptive
Moment Estimation) algorithm to minimize the loss. The initial
learning rate was set to 0.001, and the decay rate applied after
each parameter update was also set to 0.001. During the training
process of the hybrid deep learning model, the training dataset
was further subdivided into a training set and a validation set.
The training set was used to optimize the model’s trainable
parameters, whereas the validation set was employed to monitor
for potential overfitting or underfitting during training. Based
on the validation results, the model’s architecture and hyperpa-
rameters were adjusted accordingly. In this work, the validation
split ratio was set to 0.23.

To quantitatively evaluate the constitutive modeling and pre-
dictive performance of different deep learning models, three
commonly used evaluation metrics were adopted: the coeffi-
cient of determination (R²), the mean absolute error (MAE),
and the root mean square error (RMSE). In addition, the mean
square error (MSE), one of the most frequently used loss func-
tions, was employed to assess potential overfitting or underfit-
ting during the training process.

R2 = 1 −
∑n

i=1(ye − yp)2∑n
i=1(ye − ym)2 (8)

MAE =
∑n

i=1 |yp − ye|
n

(9)

RMS E =

√∑n
i=1(yp − ye)2

n
(10)

MS E =
∑n

i=1(yp − ye)2

n
(11)

In the above metrics, ye denotes the experimental (actual)
data value, yp represents the predicted data value, ym is the
mean of the actual data, and n is the total number of data points.
The coefficient of determination (R2) is commonly used in
regression models to evaluate the degree of agreement between
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Tab. 4 Summary of neural network architecture and hyperparameters of PINN model

Layer Type Times teps Units/Features Return
Sequences Output Shape Remarks

Sequence Input
Layer 320 2 — (32, 320, 2)

LSTM Layer 320 256 True (32, 320, 256)

LSTM Layer 320 512 True (32, 320, 512)

LSTM Layer 320 256 True (32, 320, 256)

LSTM Layer 1 64 False (32, 64)

Feature Input Layer 4 7 — (32, 4, 7)

LSTM Layer 4 64 True (32, 4, 64)

LSTM Layer 4 128 True (32, 4, 128)

LSTM Layer 1 16 False (32, 16)

Concatenate Layer 1 80 — (32, 80)
Merge

sequence/feature
branches

RepeatVector
Layer 80 80 — (32, 80, 80) Encoder-decoder

bridge

LSTM Layer 80 128 True (32, 80, 128)

LSTM Layer 80 256 True (32, 80, 256)
LSTM with Output

Layer 80 2 True (32, 80, 2) Final prediction
layer

predicted values and experimental measurements (Li et al.,
2023). An R2 value closer to 1 indicates a stronger correlation
and better predictive consistency. On the other hand, MAE,
MSE, and RMSE are error-based metrics that quantify the
deviation between predictions and actual data; lower values
of these metrics indicate higher prediction accuracy and better
model performance (Li et al., 2021b).
3 Analysis of HTHP cyclic hysteresis loops
3.1 Strain and dissipated energy evolutions

In the cyclic loading and unloading experiments, in order
to quantitatively assess the effects of different cyclic loading
levels and downhole temperatures on the fatigue performance
of oil-well cement paste, the accumulated plastic strain and
the proportion of dissipated energy (as defined in Section 2.2)
were extracted for each cycle. The corresponding results are
presented in Fig. 8 and Fig. 9, respectively. The initial and linear
growth stages of the reverse S-shaped relationship between
accumulated plastic strain and the number of cycles are reflect-
ed (Xiao et al., 2009). Overall, with increasing cycle number,
the accumulated plastic strain of samples under all temperature
and loading conditions increases rapidly in the early stage, but
the growth rate begins to decelerate after approximately the fifth
cycle. Correspondingly, the proportion of dissipated energy is
highest in the first cycle and then decreases sharply to a lower,
more stable level after the fifth cycle.

At loading levels of 30 %, 50 %, and 70 % (see Figs 8(a),
(b), and (c), and Figes 9(a), (b), and (c)), the residual plastic
strain of the samples accumulates rapidly in the early cycles and
then shows a slower rate of accumulation. After the fifth cycle,

the trend becomes approximately linear. Correspondingly, the
dissipated energy proportion exhibits an “L-shaped” pattern,
decreasing rapidly within the first five cycles and stabilizing
thereafter. As the loading level increases, the accumulated
plastic strain increases significantly, and the dissipated energy
proportion remains at a higher level. For example, for cement
samples cured at 140 °C, increasing the loading level from
30 % to 70 % results in a 260 % increase in accumulated
plastic strain by the 30th cycle, and a 110 % increase in the
average dissipated energy proportion between the fifth and
30th cycles. This is because, as the loading level increases,
the upper limit of the cyclic stress approaches the material’s
yield strength. Higher stress levels induce more microcrack
accumulation and more plastic deformation within the internal
pores of the cement. Therefore, a larger amount of energy is
dissipated to accommodate pore deformation and microcrack
growth, leading to increased accumulated plastic strain and
higher dissipated energy.

When the loading level is further increased to 90 % (see Figs
8(d) and 9(d)), significant differences in fatigue performance
are observed between samples cured at ambient and elevated
temperatures. At 25 °C, the cement samples demonstrate stable
and satisfactory fatigue resistance even under 90 % loading lev-
el. Specifically, similar to the results under 30 to 70 % loading
levels, the accumulated plastic strain increases linearly after
the fifth cycle, and the proportion of dissipated energy remains
stable beyond this point. Compared with the 70 % loading
level, the increase in accumulated plastic strain after 30 cycles
at 90 % loading is only 40 %, indicating that this nanosilica
cement formulation performs well under high stress at ambient
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Tab. 5 Summary of prediction performance evaluation indicators for testing sets under LSTM and PINN models

Model Type Prediction Type Performance Metrics
R2 MAE RMSE

LSTM Single-step prediction 0.9178 0.0434 0.0769
PINN Single-step prediction 0.9783 0.0250 0.0387
PINN Full-cycle prediction 0.9656 0.0289 0.0475

temperature. The elastic components in the mixture contribute
significantly to crack resistance and energy absorption.

In contrast, under elevated temperatures, the samples at 90 %
loading level exhibit rapid nonlinear accumulation of residual
plastic strain even after the fifth cycle, and the proportion of
dissipated energy continues to decline in a nonlinear manner,
failing to stabilize. Compared with the 70 % loading level, the
increase in accumulated plastic strain at 90 % loading level is
170 % at 90 °C, 130 % at 115 °C, and 220 % at 140 °C.

These differences are strongly associated with the high-
temperature curing environment. First, internal pores are re-
garded as initial defects prior to mechanical loading. Elevat-
ed curing temperatures lead to increased initial pore size and
porosity in the cement matrix (Yang et al., 2024a), which con-
tributes to more pronounced pore plastic deformation under the
same loading level. Second, calcium silicate hydrate (C–S–H)
gel is the primary phase responsible for strength in cement-
based materials (Shaikh et al., 2014). However, at higher tem-
peratures, dehydration and polymerization of C–S–H reduce the
degree of interlocking between particles (Luke, 2004), which
weakens cohesion and internal friction angle (Yang et al.,
2024b). As a result, microcrack damage becomes more likely
under cyclic loading. Both factors contribute to increased pore
deformation and microcrack accumulation, which are manifest-
ed macroscopically as higher accumulated plastic strain and
greater dissipated energy.

It is worth noting that due to variations in peak strength
among cement samples cured at different downhole temper-
atures, the dissipated energy proportion in a single cycle is
considered a more direct indicator of the extent of plastic defor-
mation and damage evolution within the oil-well cement during
that specific cycle. However, compared with the 70 % loading
level, cement samples cured at 90 °C, 115 °C, and 140 °C
exhibited significantly greater accumulation of residual plastic
strain under the 90 % loading level, with increases ranging from
130 % to 220 % (as shown in Fig. 8(d)). In contrast, the average
dissipated energy proportion after the fifth cycle showed only a
marginal increase, ranging from 3 % to 11 % (as shown in Fig.
9(d)). This indicates that the dissipated energy proportion does
not effectively capture the internal energy dissipation behavior
of the cement samples under 90 % loading level. The substantial
difference in hysteresis loop morphology induced by different
loading levels suggests that further investigation is required, as
discussed in detail in Section 3.2.

3.2 Evolution of the proportion of plastic
damage energy

Due to measurement errors associated with the LVDT sen-

sors used in the cyclic loading mechanical tests, fatigue-related
parameters such as residual plastic strain, elastic energy, and
dissipated energy exhibit certain degrees of fluctuation. To
better capture the evolution of plastic damage energy with
respect to the number of loading cycles, the full sequence of
30 cycles was further divided into five distinct stages based on
the progression of hysteresis loop morphology: Stage I: Cycle
1, Stage II: Cycles 2 to 5, Stage III: Cycles 6 to 10, Stage IV:
Cycles 11 to 20, Stage V: Cycles 21 to 30. To clearly observe the
changes in hysteresis loop shape across different cycle ranges,
a representative cycle was selected from each stage based on
the cycle whose plastic-damage-energy proportion most closely
matched the average value for that stage. The selected repre-
sentative cycles and their corresponding hysteresis loops are
summarized in Fig. 10.

The evolution of the average proportion of plastic damage
energy for cement samples under different downhole temper-
atures and loading levels is summarized in Fig. 11. It can be
observed that, with increasing number of cycles, the average
plastic damage energy proportion decreases consistently across
all samples. This trend corresponds to the gradual closure of
the lower opening of the hysteresis loops (as shown in Fig. 10)
and the decelerated growth of accumulated plastic strain (as
shown in Fig. 8). For samples cured at ambient temperature,
the cement maintained good resistance to deformation across all
four loading levels (30 % to 90 %). As a result, the proportion
of plastic damage energy remained lower after the fifth cycle,
ranging from 2.62 % to 18.17 %. Consequently, the hysteresis
loop shapes under the four loading levels are relatively similar,
with small lower openings (see Fig. 10).

In contrast, for samples cured at elevated temperatures of
90 °C, 115 °C, and 140 °C, the average proportion of plastic
damage energy consistently remained low beyond the 5th cycle
under 30%–70% loading levels, exhibiting a gradual increase
with rising temperature (2.59 %–14.02 %, 5.74 %–14.86 %,
and 6.41 %–16.27 %, respectively). This indicates that cement
samples at each downhole temperature exhibit similar hystere-
sis loop morphology (Fig. 10) and maintain a small yet stable
proportion of plastic damage energy under 30 %–70 % loading
conditions.

When the loading level increases to 90 %, noticeable changes
in the hysteresis loop morphology are observed for cement sam-
ples at all downhole temperatures (as shown in Fig. 10). Under
these conditions, the hysteresis loops tend to exhibit a nearly
linear elastic stress and strain response, with minimal nonlinear
hysteretic effects during unloading. This phenomenon may be
attributed to further pore compaction within the cement matrix
under high loading, which leads to a toughening effect in the
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material. Due to the unstable and rapid increase in residual
plastic strain, the lower opening of the hysteresis loop becomes
significantly larger compared with those observed under 30 %
to 70 % loading levels. As a result, the plastic damage energy
proportion remains high throughout the 30 loading cycles and
increases sharply with temperature. Specifically, the average
proportion of plastic damage energy exhibiting a significant
increase with rising temperature (21.36 %, 27.34 %, and 45.32
%, respectively, as shown in Fig. 11).

These findings demonstrate that the dissipated energy con-
tained in cyclic hysteresis loops can be subdivided into plastic
damage energy and damping energy. Among them, the plastic
damage energy proportion provides a more accurate reflection
of the morphological characteristics of the hysteresis loops
under different loading levels. Moreover, this highlights that
fatigue life prediction models based solely on accumulated
plastic strain or total dissipated energy are insufficient to cap-
ture the complex morphological evolution of cyclic hysteresis
behavior. Therefore, it is essential to further explore theoretical
approaches for directly constructing cyclic stress and strain
constitutive models.

4 Analysis of deep learning models
4.1 Performance evaluation of model training

process
Ablation experiments were designed to implement and com-

pare the single-step training and prediction processes of two
deep learning models: the standard LSTM model and the PINN-
enhanced LSTM model (i.e. PINN model). Fig. 12 presents a
comparison of the training and validation errors for both hybrid
models across all training epochs. The training and validation
errors of both models gradually decrease as the number of
training epochs increases, eventually converging to relatively
small values. This indicates that two deep learning models were
effectively trained without signs of overfitting or underfitting.
Furthermore, a comparison of the minimum mean absolute error
(MAE) values for the training and validation sets reveals that
the PINN model demonstrates superior training performance.
Specifically, it achieves the smallest and most consistent errors
between the training and validation datasets, with a training set
MAE of 7.5 × 10−4 and a validation set MAE of 1.1 × 10−3.

4.2 Performance evaluation of single-step
prediction

The predictive capability of the models was evaluated us-
ing a testing set that was not included during training. The
testing set consisted of three distinct loading conditions, each
characterized by different hysteresis loop shapes. The single-
step prediction results of the LSTM and PINN models under
these conditions are illustrated in Fig. 13, and the corresponding
performance metrics are summarized in Table 5. Among the
models, the PINN model achieved the highest coefficient of de-
termination (R²=0.9783) and the lowest prediction errors, with
a mean absolute error (MAE) of 0.0250 and a root mean square
error (RMSE) of 0.0387. This model consistently demonstrated
the best agreement with the actual cyclic curves across all

test conditions, indicating superior single-step prediction per-
formance and strong generalization capability. These results
suggest that the incorporation of physically meaningful feature
sequences significantly enhances the role of physical guidance
during the deep learning process. As a result, the learning
performance and prediction accuracy of PINN deep learning
model architecture were substantially improved.

4.3 Performance evaluation of full-cycle
prediction

The results presented in Fig. 13 demonstrate that the physics-
constrained PINN model, enhanced with additional feature in-
puts, provides improved performance in single-step prediction
of cyclic curves. However, the predicted residual plastic strain
still deviates considerably from the experimentally measured
values. It can be anticipated that, as the number of cycles in-
creases, the overall prediction error—including that of residual
plastic strain—will progressively accumulate and amplify. To
address this issue, the method described in Section 2.3.5 was
adopted. By incorporating additional physical constraints into
the prediction process and applying a recursive prediction strat-
egy, the same neural network architecture and hyperparameters
used in the PINN single-step prediction model were directly
extended to enable full-cycle prediction.

The full-cycle prediction results for all test time-series data
using the physics-constrained PINN model are shown in Fig.
14, with the corresponding performance metrics summarized
in Table 5. As illustrated in Fig. 14, the predicted curves align
closely with the experimental cyclic curves across all test con-
ditions, indicating excellent full-cycle prediction performance
and strong generalization capability. These findings confirm
that the physics-constrained PINN model achieves robust long-
term prediction of the cyclic stress and strain constitutive be-
havior by leveraging two forms of physics-informed supervi-
sion: (1) physical guidance through the integration of fatigue-
related feature data, and (2) physical constraints applied dur-
ing the recursive prediction process. Furthermore, the model
demonstrates high predictive accuracy, with a coefficient of
determination (R²) of 0.9656, and low MAE and RMSE val-
ues of 0.0289 and 0.0475, respectively, confirming its strong
performance in full-cycle prediction.

5 Conclusions
A comprehensive analysis of 480 hysteresis loops from 16

sample groups was conducted to evaluate critical parameters
including accumulated plastic strain, dissipation energy propor-
tion, and plastic damage energy proportion. Besides, an inno-
vative modeling methodology for cyclic constitutive prediction
was developed in this study, including cycle-by-cycle data
segmentation, physics-informed neural networks (PINN), and
recursive prediction with physical constraints, the following
key conclusions are drawn:

1. The dissipation energy within hysteresis loops can be
subdivided into plastic damage energy and damping energy.
The proportion of plastic damage energy more effectively char-
acterizes hysteresis loop morphology across varying loading
levels.
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2. Traditional fatigue life prediction models, relying on single
fatigue parameters extracted from cyclic curves, fail to capture
complex evolutionary features of hysteresis loops.

3. Through normalization, down-sampling, and cycle-by-
cycle segmentation of cyclic loading test data, an LSTM archi-
tecture was developed to achieve single-step rolling prediction
of hysteresis loops, addressing long-term dependencies and
nonlinearities.

4. By incorporating seven physically meaningful fatigue pa-
rameters into the training dataset, a PINN model achieved supe-
rior single-step prediction accuracy (R²=0.9783, MAE=0.0250,
RMSE=0.0387).

5. Recursive prediction augmented with physics-based
constraints enabled continuous full-process rolling predic-
tion, effectively curbing error propagation. The PINN model
demonstrated sustained predictive capability for cyclic stress-
strain relationships, with high R² (0.9656) and low errors
(MAE=0.0289, RMSE=0.0475).

This study establishes the first application of deep learning
frameworks to cyclic stress-strain constitutive modeling of oil-
well cement. This innovative modeling methodology for cyclic
constitutive prediction effectively overcomes the limitations of
conventional mechanical models, such as mathematical com-
plexity and poor generalizability. However, it is necessary to
objectively point out that, due to the still relatively limited range
of operating conditions covered by the dataset, this method
remains dependent on the initial cycles of the cyclic loading
tests. Further expansion of the dataset is required to enhance
the model’s prediction accuracy and broaden its applicability.
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